Journal of Thermal Analysis and Calorimetry

, Volume 72, Issue 3, pp 1057–1064 | Cite as

Thermal degradation of collagen-based materials that are supports of cultural and historical objects

  • P. Budrugeac
  • L. Miu
  • V. Bocu
  • F. J. Wortman
  • C. Popescu


The thermal analysis methods (TG, DTG and DTA) were used for the investigation of the thermal degradation of some recent manufactured tanned leathers, leathers that are supports of cultural or historical objects (leather from book covers (XVII-XIX centuries); leather from an Austrian belt (Franz Joseph period), Cordoba leather (XVII century), lining leathers), recent and patrimonial parchments and recent extracted collagen (sorts of collagen obtained from bovine leather at different pH-values, bovine collagen with different hydration degree). At progressive heating, all investigated materials exhibit two main successive processes, associated with the dehydration and thermo-oxidative degradation. Each analyzed material has a characteristic thermal analysis curve (TG, DTG and DTA) that can be considered a material 'fingerprint'. This result suggests the use of the thermal analysis methods to identify of leathers from which the patrimonial objects are manufactured. The rate of thermo-oxidation of recent manufactured tanned leathers is substantially higher than the rate of the same process corresponding to naturally aged leathers that exhibit values of the thermo-oxidation rate appropriate to those obtained for parchments and collagens. The rate of thermo-oxidation of leather can thus be used as a criterion to distinguish between recent manufactured leather and patrimonial one.

collagen-based materials 'fingerprint' historical objects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Larsen, Thermochim. Acta, 365 (2000) 85.CrossRefGoogle Scholar
  2. 2.
    C. Chahine, Thermochim. Acta, 365 (2000) 101.CrossRefGoogle Scholar
  3. 3.
    N. S. Cohen, M. Odlyha and G. Foster, Thermochim. Acta, 365 (2000) 111.CrossRefGoogle Scholar
  4. 4.
    T. J. Wess and J. P. Orgel, Thermochim. Acta, 365 (2000) 119.CrossRefGoogle Scholar
  5. 5.
    G. M. Nielsen-March, R. E. M. Hedges, T. Mann and M. J. Collins, Thermochim. Acta, 365 (2000) 129.CrossRefGoogle Scholar
  6. 6.
    C. Marcolli and H. G. Wiedemann, J. Therm. Anal. Cal., 64 (2001) 987.CrossRefGoogle Scholar
  7. 7.
    G. de Simone, B. Naviglio, M. Tomaselli, L. Bianchi, D. Sannino and P. Ciambelli, XXIII IULTCS Congress, Friedrichshafen, May 15–20, 1995, Part I, Paper 21.Google Scholar
  8. 8.
    J. J. Lim and M. H. Shannon, Biopolymers, 13 (1974) 1791.CrossRefGoogle Scholar
  9. 9.
    A. Kaminska and A. Sionkowska, Polym. Degrad. Stab., 51 (1996) 15.CrossRefGoogle Scholar
  10. 10.
    L. Slusarski, J. Thermal Anal., 29 (1984) 905.CrossRefGoogle Scholar
  11. 11.
    C. Vasile, in 'Handbook of Polyolefins' (Eds C. Vasile and R. Seyrmour), Dekker, New York 2000, Chap. 12.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • P. Budrugeac
    • 1
  • L. Miu
    • 2
  • V. Bocu
    • 2
  • F. J. Wortman
    • 3
  • C. Popescu
    • 3
  1. 1.ICPE-CA-Research and Development Institute for Electrical EngineeringBucharestRomania
  2. 2.Leather and Footwear Research InstituteBucharestRomania
  3. 3.DWI-Deutsches Wollforschungsinstitut an der RWTH Aachen e V.AachenGermany

Personalised recommendations