Advertisement

Journal of Applied Electrochemistry

, Volume 33, Issue 7, pp 607–612 | Cite as

Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials

  • X-M. Zhu
  • H-X. YangEmail author
  • X-P. Ai
  • J-X. Yu
  • Y-L. Cao
Article

Abstract

Hydrated calcium zincate was synthesized by mechanical ball milling of ZnO and Ca(OH)2 in water at room temperature. The structural and electrochemical properties of this material used as rechargeable anodic material were examined by microelectrode voltammetry, charge–discharge measurements and structural analysis. The results showed that during mechanical milling, ZnO, Ca(OH)2 and H2O reacted rapidly to form Ca[Zn(OH)3]2 · 2H2O which was subsequently transformed to a stable structure CaZn2(OH)6 · 2H2O. Since this composite oxide has lower solubility in KOH solution (<35 wt %) and better electrochemical reversibility than ZnO-based negative materials, the zinc anodes using this material can overcome the problems of shape changes and dendritc formation, and therefore exhibit improved cycling life.

anodic material calcium zincate cycling properties mechanical milling XRD analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Biegler, R.L. Deutscher, S. Fletcher, S. Hua and R. Woods, J. Electrochem. Soc. 130 (1983) 2303.Google Scholar
  2. 2.
    R. Jain, T.C. Adler, F.R. Mclarnon and E.J. Cairns, J. Appl. Electrochem. 22 (1992) 1039.Google Scholar
  3. 3.
    R. Renuka, L. Srinivasan and S. Ramamurthy, J. Appl. Electrochem. 31 (2001) 655.Google Scholar
  4. 4.
    J. McBreen and E. Gannon, J. Electrochem. Soc. 130 (1983) 1980.Google Scholar
  5. 5.
    R. Shivkumar, G.P. Kalaignan and T. Vasudevan, J. Power Sources 75 (1998) 90.Google Scholar
  6. 6.
    R.F. Thornton and Eric J. Carlson, J. Electrochem. Soc. 127 (1980) 1448.Google Scholar
  7. 7.
    G.D. Wilcox and P.J. Mitchell, J. Power Sources 32 (1990) 31.Google Scholar
  8. 8.
    G.D. Wilcox and P.J. Mitchell, J. Power Sources 28 (1989) 345.Google Scholar
  9. 9.
    J-M. Wang, L. Zhang, C. Zhang and J-Q. Zhang, J. Power Sources 102 (2001) 139.Google Scholar
  10. 10.
    F. Mansfeld and S. Gilman, J. Electrochem. Soc. 117 (1970) 588.Google Scholar
  11. 11.
    E.D. Woumfo and O. Vittori, J. Appl. Electrochem. 21 (1991) 77.Google Scholar
  12. 12.
    K. Bass, P.J. Mitchell and G.D. Wilcox, J. Power Sources 35 (1991) 333.Google Scholar
  13. 13.
    M.B. Liu, G.M. Cook and N.P. Yao, J. Electrochem. Soc. 129 (1982) 913.Google Scholar
  14. 14.
    J-X. Yu, H-X. Yang, X-P. Ai and X-M. Zhu, J. Power Sources 103 (2001) 93.Google Scholar
  15. 15.
    C-S. Cha, C-M. Li, H-X. Yang and P-F. Liu, J. Electroanal. Chem. 368 (1994) 368.Google Scholar
  16. 16.
    Joint Committee on Powder Diffraction Standards, 4-0733, 4-0831 and 21-1486 (1980).Google Scholar
  17. 17.
    Joint Committee [16], 25-1449 and 24-221 (1980).Google Scholar
  18. 18.
    Y.C. Chang and G. Prentice, J. Electrochem. Soc. 136 (1989) 3398.Google Scholar
  19. 19.
    H.J. Park and S.I. Mho, ‘Analytical Sciences’, 13supplement (1997) 311.Google Scholar
  20. 20.
    M.C.H. Mckubre and D.D. Macdonald, J. Electrochem. Soc. 128 (1981) 524.Google Scholar
  21. 21.
    M. Cai and S.M. Park, J. Electrochem. Soc. 143 (1996) 2125.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • X-M. Zhu
    • 1
  • H-X. Yang
    • 1
    Email author
  • X-P. Ai
    • 1
  • J-X. Yu
    • 1
  • Y-L. Cao
    • 1
  1. 1.Department of ChemistryWuhan UniversityChina

Personalised recommendations