Photosynthesis Research

, Volume 76, Issue 1–3, pp 157–171

Anoxygenic phototrophic bacteria from extreme environments

  • Michael T. Madigan
Article

Abstract

A diverse group of anoxygenic phototrophic bacteria thrive in habitats characterized by extremes of temperature, pH, or salinity. These ‘extremophilic’ anoxygenic phototrophs are optimally adapted to the conditions of their habitats and are ideal model systems for defining the physiochemical limits of photosynthesis. Extremophilic phototrophs have provided new insight into the evolution of photosynthesis and play ecological roles as primary producers in their unusual habitats.

alkaliphiles acidophiles anoxygenic phototrophic bacteria R.W. Castenholz P. Caumette extreme environments V.M. Gorlenko halophiles J.F. Imhoff M.T. Madigan N. Pfennig B.K. Pierson psychrophiles thermophiles H.G. Trüper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach LA, Carey JR and Madigan MT (2001) Photosynthesis and phylogenetic primers for the detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67: 2922–2926PubMedCrossRefGoogle Scholar
  2. Amesz J (1995) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 687–697. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  3. Bedard DL, Jerzak GVS, Nübel U, Bateson MM and Ward DM (2002) Novel thermophilic green sulfur bacteria discovered in hot springs in two regions of Yellowstone National Park. Abstr N159, American Society for Microbiology General Meeting, Salt Lake City, UtahGoogle Scholar
  4. Blankenship RE (2001) Molecular evidence for the evolution of photosynthesis. Trends Plant Sci 6: 4–6PubMedCrossRefGoogle Scholar
  5. Boomer SM, Pierson BK, Austinhurst R and Castenholz RW(2000) Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park. Arch Microbiol 174: 152–161PubMedCrossRefGoogle Scholar
  6. Boomer SM, Lodge DP, Dutton BE and Pierson BK (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68: 346–355PubMedCrossRefGoogle Scholar
  7. Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA and Madigan MT (1999a) Heliorestis daurensis gen. nov. sp. nov., an alkaliphilic coiled to rod-shaped phototrophic heliobacterium from an alkaline Siberian soda lake. Arch Microbiol 172: 167–174PubMedCrossRefGoogle Scholar
  8. Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF, Suling J and Mityushina L (1999b) Thiorhodospira sibirica gen. nov. sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49: 697–703PubMedGoogle Scholar
  9. Bryantseva IA, Gorlenko VM, Kompantseva EI and Imhoff JF (2000a) Thioalkalicococcus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Bacteriol 50: 2157–2163Google Scholar
  10. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB and Osipov GA (2000b) Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis. Arch Microbiol 174: 283–291PubMedCrossRefGoogle Scholar
  11. Burke CM and Burton HR (1988a) The ecology of photosynthetic bacteria in Burton Lake, Vestfold Hills, Antarctica. Hydrobiologia 165: 1–11CrossRefGoogle Scholar
  12. Burke CM and Burton HR (1988b) Photosynthetic bacteria in meromictic lakes and stratified fjords of the Vestfold Hills, Antarctica. Hydrobiologia 165: 13–23CrossRefGoogle Scholar
  13. Castenholz RW (1969) Themophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476–504PubMedGoogle Scholar
  14. Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb Ecol 3: 79–105CrossRefGoogle Scholar
  15. Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and HG Trüper (eds) Green Photosynthetic Bacteria, pp 243–255. Plenum, New YorkGoogle Scholar
  16. Castenholz RW, Bauld J and Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74: 325–336CrossRefGoogle Scholar
  17. Castenholz RW and Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 87–103. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  18. Caumette P, Baulaigue R and Matheron R (1988) Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst Appl Microbiol 10: 284–292Google Scholar
  19. Caumette P, Baulaigue R and Matheron R (1991) Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch Microbiol 155: 170–176CrossRefGoogle Scholar
  20. Caumette P, Imhoff JF, Suling J and Matheron R (1997) Chromatium glycolicum sp. nov, a moderately halophilic purple sulfur bacterium that uses glycolate as substrate. Arch Microbiol 167: 11–18PubMedCrossRefGoogle Scholar
  21. Drews G (1981) Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327CrossRefGoogle Scholar
  22. Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA and Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99: 9509–9514PubMedCrossRefGoogle Scholar
  23. Favinger J, Stadtwald R and Gest, H (1989). Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55: 291–296PubMedCrossRefGoogle Scholar
  24. Frigaard NU and Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67: 2538–2544.PubMedCrossRefGoogle Scholar
  25. Frigaard NU, Voigt GD and Bryant DA (2002)Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184: 3368–3376PubMedCrossRefGoogle Scholar
  26. Garcia SP, Parot A, Verméglio A and MT Madigan (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium, Chromatium tepidum. Biochim Biophys Acta 850: 390–395CrossRefGoogle Scholar
  27. Gest H (1994) Discovery of the heliobacteria. Photosynth Res 41: 17–21CrossRefGoogle Scholar
  28. Gich F, Garcia-Gil J and Overmann J (2001) Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Arch Microbiol 177: 1–10PubMedCrossRefGoogle Scholar
  29. Glaeser J and Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol. 171: 405–416PubMedCrossRefGoogle Scholar
  30. Gorlenko VM (1976) Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya 44: 682–684Google Scholar
  31. Hanada S, Hiraishi A, Shimada K and Matsurra K (1995) Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45: 676–681PubMedGoogle Scholar
  32. Hanada S, Takaichi S, Matsurra K and Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52: 187–193PubMedCrossRefGoogle Scholar
  33. Heda GD and Madigan MT (1988) Thermal properties and oxygenase activity of ribulose-1,5–bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium tepidum. FEMS Microbiol Lett 51: 45–50CrossRefGoogle Scholar
  34. Heda GD and Madigan MT (1989) Purification and characterization of ribulose-1,5–bisphosphate carboxylase from the thermophilic purple bacterium, Chromatium tepidum. Eur J Biochem 184: 313–319PubMedCrossRefGoogle Scholar
  35. Herter S, Fuchs G, Baucher A and Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277: 20277–20283PubMedCrossRefGoogle Scholar
  36. Hiraishi A and Ueda U (1994) Intrageneric structure of the genus Rhodobacter, transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 44: 15–23Google Scholar
  37. Hiraishi A, Urata K and Satoh T (1995) A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 45: 226–234PubMedGoogle Scholar
  38. Imhoff JF (1988) Halophilic phototrophic bacteria. In: Rodriguez-Valera F (ed) Halophilic Bacteria, Vol I, pp 85–108. CRC Press, Boca Raton, FloridaGoogle Scholar
  39. Imhoff JF (1992) The family Ectothiorhodospiraceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd ed, pp 3222–3229. Springer-Verlag, New YorkGoogle Scholar
  40. Imhoff JF (2001a) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176: 243–254PubMedCrossRefGoogle Scholar
  41. Imhoff JF (2001b) Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. Int J Syst Evol Microbiol 51: 1863–1866PubMedGoogle Scholar
  42. Imhoff JF and Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae. A reevaluation of their taxonomy on the basis of 16S rDNA analysis. Arch Microbiol 165: 106–113PubMedCrossRefGoogle Scholar
  43. Imhoff JF and Trüper HG (1977) Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114: 115–121CrossRefGoogle Scholar
  44. Imhoff JF and Trüper HG (1980) Chromatium purpuratum, sp. nov., a new species of the Chromatiaceae. Zbl Bakt, I Abt Orig C1, 61–69Google Scholar
  45. Imhoff JF and Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov. a new halophilic and alkaliphilic phototrophic bacterium. Zbl Bakt I Abt Orig C2: 228–234Google Scholar
  46. Imhoff JF, Hashwa F and Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84: 381–388Google Scholar
  47. Imhoff JF, Sahl HG, Soliman GSH and Trüper HG (1979) TheWadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1: 219–234CrossRefGoogle Scholar
  48. Imhoff JF, Tindall B, Grant WD and Trüper HG (1981) Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130: 238–242CrossRefGoogle Scholar
  49. Imhoff JF, Trüper HG and Pfennig N (1984) Rearrangement of the species and genera of phototrophic ‘purple nonsulfur bacteria.’ Int J Syst Bacteriol 34: 340–343CrossRefGoogle Scholar
  50. Imhoff JF, Petri R and Süling J (1998a) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the alpha-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., ofRhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis com. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov., and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48: 793–798PubMedGoogle Scholar
  51. Imhoff JF, Süling J and Petri R (1998b) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48: 1129–1143PubMedGoogle Scholar
  52. Jones BE, Grant WD, Duckworth AW and Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles. 2: 191–200PubMedCrossRefGoogle Scholar
  53. Jung DO, Achenbach LA and Madigan MT (2001). Characterization of Chlorobium strain PDL isolated from Pendant Lake, Antarctica. Abstr I93, American Society for Microbiology General Meeting, Orlando, FloridaGoogle Scholar
  54. Jung DO, Achenbach LA and Madigan MT (2002) A morphologically unique phototrophic Heliobacterium isolated from the Wadi El Natroun, Egypt. Abstr I16, American Society for Microbiology General Meeting, Salt Lake City, UtahGoogle Scholar
  55. Karr L, Carey JR, Madigan MT and Achenbach LA (2001) Biodiversity of anoxygenic phototrophs in permanently frozen lakes. Abstr N58, American Society for Microbiology General Meeting, Orlando, FloridaGoogle Scholar
  56. Kimble LK, Mandelco L, Woese CR and Madigan MT (1995) Heliobacterium modesticaldum, sp. nov., a thermophilic Heliobacterium of hot springs and volcanic soils. Arch Microbiol 163: 259–267CrossRefGoogle Scholar
  57. Kompantseva EI (1986) New halophilic purple bacteria Rhodobacter euryhalinus sp.nov. Mikrobiologiya 54: 974–982Google Scholar
  58. Kompantseva EJ and Gorlenko VM (1984) A new species of moderately halophilic purple bacterium Rhodospirillum mediosalinum sp. nov. Mikrobiologiya 53: 775–781Google Scholar
  59. Kramer H and J. Amesz (1996) Antenna organisation in the purple sulphur bacteria Chromatium vinosum and Chromatium tepidum. Photosynth Res 49: 237–244CrossRefGoogle Scholar
  60. Mack EE, Mandelco L, Woese CR and Madigan MT (1993) Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160: 363–371CrossRefGoogle Scholar
  61. Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315PubMedCrossRefGoogle Scholar
  62. Madigan MT (1986) Chromatium tepidum, sp. n, a thermophilic photosynthetic bacterium of the family Chromatiaceae. Intl J Syst Bacteriol 36: 222–227Google Scholar
  63. Madigan MT (1993) Thermophilic purple and green sulfur bacteria. In: Guerrero R and Pedrós-Alió C (eds) Proceedings of the 6th Intl Symp Microbial Ecology, pp 535–538. Spanish Society for Microbiology, Barcelona, SpainGoogle Scholar
  64. Madigan MT (1998) Isolation and characterization of psychrophilic purple bacteria from Antarctica. In: Peschek GA, Löffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 699–706. Plenum, New YorkGoogle Scholar
  65. Madigan MT (2000) Bacterial habitats in extreme environments. In: Seckbach J (ed) Journey to Diverse Microbiol Worlds, pp 61–72. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  66. Madigan MT (2001a) Heliobacteriaceae. In Boone D, Castenholz RW and Garrity GM (eds) Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol 1, pp 625–630. Springer-Verlag, New YorkGoogle Scholar
  67. Madigan MT (2001b) Thermophilic anoxygenic phototrophs: diversity and ecology. In: Reysenbach A-L, Voytek M and Mancinelli R (eds) Thermophiles: Biodiversity, Ecology, and Evolution, pp 103–123. Kluwer Academic Publishers/Plenum Publishers, New YorkGoogle Scholar
  68. Madigan MT and Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic gliding bacterium. J Bacteriol 122: 782–784PubMedGoogle Scholar
  69. Madigan MT and Marrs BL (1997) Extremophiles. Sci Am 276: 82–87PubMedCrossRefGoogle Scholar
  70. Madigan MT and Ormerod JG (1995) Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 17–30. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  71. Madigan MT, Petersen SR and TD Brock (1974) Nutritional studies on Chloroflexus, a filamentous, photosynthetic gliding bacterium. Arch Microbiol 100: 97–103CrossRefGoogle Scholar
  72. Madigan MT, Takigiku R, Lee RG, Gest H and Hayes JM (1989) Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: Evidence for autotrophic growth in natural populations. Appl Environ Microbiol 55: 639–644PubMedGoogle Scholar
  73. Madigan MT, Jung DO, Woese CR and Achenbach LA (2000) Rhodoferax antarcticus, sp. nov., a moderately psychrophilic purple nonsulfur bacterium from an Antarctic microbial mat. Arch Microbiol 173: 269–277PubMedCrossRefGoogle Scholar
  74. Madigan MT, Imhoff JF and Trüper HG (2003) Genus Rhodopila. In: Brenner DJ, Krieg NR, Staley JT and Garrity GM (eds) Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol 2. Springer-Verlag, New York (in press)Google Scholar
  75. McClain J, Rollo DR, Rushing BG and Bauer CE (2002) Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J Bacteriol 184: 2429–2438PubMedCrossRefGoogle Scholar
  76. Milford AD, Jung DO, Achenbach LA and Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174: 18–27PubMedCrossRefGoogle Scholar
  77. Miyoshi M (1897) Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Zentralbl Bakteriol Parasiten Infek Abt 2(3): 526–527Google Scholar
  78. Neerken S and Amesz J (2001) The antenna reaction center complex of heliobacteria: composition, energy conversion and electron transfer. Biochim Biophys Acta 1507: 278–290PubMedCrossRefGoogle Scholar
  79. Nissen H and Dundas ID (1984). Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portugese saltern. Arch Microbiol 138: 251–256CrossRefGoogle Scholar
  80. Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and highpotential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566PubMedCrossRefGoogle Scholar
  81. Nozawa T and Madigan MT (1991) Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum. J Biochem 110: 588–594PubMedGoogle Scholar
  82. Nozawa T, Fukada T, Hatano M and Madigan MT (1986) Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed from absorption, circular dichroism, and emission spectra. Biochim Biophys Acta 852: 191–197CrossRefGoogle Scholar
  83. Nübel U, Bateson MM, Madigan MT, Kuhl M and Ward DM (2001) The diversity and distribution of bacteria phylogenetically related to Chloroflexus in hypersaline microbial mats. Appl Environ Microbiol 67: 4365–4371PubMedCrossRefGoogle Scholar
  84. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA and Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. System Appl Microbiol 9: 47–53Google Scholar
  85. Permentier HP, Neerken S, Overmann J and Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40: 5573–5578PubMedCrossRefGoogle Scholar
  86. Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99: 597–602PubMedGoogle Scholar
  87. Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100: 197–206CrossRefGoogle Scholar
  88. Pierson BK and Castenholz RW (1971) Bacteriochlorophylls in gliding filamentous prokaryotes of hot springs. Nature New Biol 233: 25–27PubMedCrossRefGoogle Scholar
  89. Pierson BK and Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs. Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24PubMedCrossRefGoogle Scholar
  90. Pierson BK and Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100: 283–305CrossRefGoogle Scholar
  91. Pierson BK and Castenholz RW (1995) Taxonomy and physiology of filamentous anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 31–47. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  92. Pierson BK, Giovannoni SJ and Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47: 576–584PubMedGoogle Scholar
  93. Pierson BK, Giovannoni SJ, Stahl DA and Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167PubMedCrossRefGoogle Scholar
  94. Pierson BK, Valdez D, Larsen M, Morgan E and Mack EE (1994) Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynth Res 41: 35–52CrossRefGoogle Scholar
  95. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD and Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095–2098PubMedCrossRefGoogle Scholar
  96. Raymond JC and Sistrom WR (1967) The isolation and preliminary characterization of a halophilic photosynthetic bacterium. Arch Mikrobiol 59: 255–268PubMedCrossRefGoogle Scholar
  97. Raymond JC and Sistrom WR (1969) Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Arch Mikrobiol 69: 121–126PubMedCrossRefGoogle Scholar
  98. Resnick SM and Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65: 165–170CrossRefGoogle Scholar
  99. Rothschild LJ and Mancinelli RL (2001) Life in extreme environments. Nature 409: 1092–1101PubMedCrossRefGoogle Scholar
  100. Stadtwald-Demchick R, Turner FR and Gest H (1990) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic bacteria. FEMS Microbiol Lett 71: 117–122CrossRefGoogle Scholar
  101. Stevenson AK, Kimble LK, Woese CR and Madigan MT (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53: 1–12CrossRefGoogle Scholar
  102. Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K and Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′, 2′-dihydro-β-carotene, 1′, 2′-dihydrochlorobactene and OH-chlorobactene glycoside ester, and the carotenoid composition of different strains. Arch Microbiol 168: 270–276PubMedCrossRefGoogle Scholar
  103. Takaichi S, Jung DO and Madigan MT (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobaca bogoriensis. Photosynth Res 67: 207–214CrossRefPubMedGoogle Scholar
  104. Takaichi S, Oh-oka H, Maoka T, Jung DO and Madigan MT (2003) Unusual C30 carotenoids of 4,4′-diaponeurosporene and OH-diaponeurosporene glucoside esters from alkaliphilic heliobacteria, Heliorestis daurensis and Heliorestis baculata. Arch Microbiol (in press)Google Scholar
  105. Tindall BJ (2001) Genus XI. Natronobacterium. In: Boone D, Castenholz RW and Garrity GM (eds) Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol 1, pp 329–330. Springer-Verlag, New YorkGoogle Scholar
  106. Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A and Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41: 4358–4370PubMedCrossRefGoogle Scholar
  107. Wahlund TM and Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 175: 474–478PubMedGoogle Scholar
  108. Wahlund TM and Madigan MT (1995) Genetic transfer by conjugation in the thermophilic photosynthetic green bacterium, Chlorobium tepidum. J Bacteriol 177: 2583–2588PubMedGoogle Scholar
  109. Wahlund TM, Castenholz RW, Woese CR and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs. Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–91CrossRefGoogle Scholar
  110. Ward DM and Castenholz RW (2000) Cyanobacteria in geothermal habitats. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria: Their Diversity in Time and Space, pp 37–59.Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  111. Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities, pp 3–15. American Society for Microbiology, Washington, DCGoogle Scholar
  112. Xiong J and Bauer CE (2002) Complex evolution of photosynthesis. Ann Rev Plant Biol 53: 503–521CrossRefGoogle Scholar
  113. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael T. Madigan
    • 1
  1. 1.Department of Microbiology and Center for Systematic BiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations