Advertisement

Neurochemical Research

, Volume 28, Issue 9, pp 1299–1306 | Cite as

Angiotensin II Causes Calcium Entry into Bovine Adrenal Chromaffin Cells via Pathway(s) Activated by Depletion of Intracellular Calcium Stores

  • David A. Powis
  • Mariann Zerbes
  • Lynn M. Herd
  • Peter R. Dunkley
Article
  • 41 Downloads

Abstract

The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to angiotensin II have been investigated. In fura-2 loaded cells exposure to a maximally effective concentration of angiotensin II (100 nM) caused a rapid, but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin in Ca2+-free medium to deplete the internal Ca2+ stores, angiotensin II caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Reintroduction of external Ca2+ to thapsigargin-treated, store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was not further increased upon exposure to angiotensin II. Analysis of the data suggests that in bovine chromaffin cells angiotensin II causes Ca2+ entry via a pathway(s) activated as a consequence of internal store mobilization, and entry through this pathway(s) forms the majority of the sustained Ca2+ influx evoked by angiotensin II.

Bovine chromaffin cells angiotensin II Ca2+ entry pathways intracellular Ca2+ stores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunn, S. J. and Marley, P. D. 1989. Effects of angiotensin II on cultured, bovine adrenal medullary cells. Neuropeptides 13: 121-132.Google Scholar
  2. 2.
    O'Sullivan, A. J. and Burgoyne, R. D. 1989. A comparison of bradykinin, angiotensin II and muscarinic stimulation of cultured bovine adrenal chromaffin cells. Biosci. Rep. 9:243-243.Google Scholar
  3. 3.
    Powis, D. A. and O'Brien, K. J. 1991. Angiotensin II increases catecholamine release from bovine adrenal medulla but does not enhance that evoked by K+ depolarization or by carbachol. J. Neurochem. 57:1461-1469.Google Scholar
  4. 4.
    Cheek, T. R., Morgan, A., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. 1993. Spatial localization of agonist-induced Ca2+ entry in bovine adrenal chromaffin cells: Different patterns induced by histamine and angiotensin II, and relationship to catecholamine release. J. Cell Sci. 105: 913-921.Google Scholar
  5. 5.
    Choi, A. Y., Cahill, A. L., Perry, B. D., and Periman, R. L. 1993. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing than in norepinephrine-containing chromaffin cells. J. Neurochem. 61:541-549.Google Scholar
  6. 6.
    Stachowiak, M. K., Goc, A., Hong, J. S., Kaplan, B.B., and Stachowiak, E. K. 1990. Neural and hormonal regulation of the tyrosine hydroxylase gene in adrenal medullary cells: Participation of c-fos and AP1 factors. Mol. Cell Neurosci. 1:202-213.Google Scholar
  7. 7.
    Stachowiak, M. K., Jiang, H-K., Poisner, A. M., Tuominen, R. K., and Hong, J.-S. 1990. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin in cultured adrenal medullary cells: Molecular mechanisms and nature of second messenger systems. J. Biol. Chem. 265:4694-4702.Google Scholar
  8. 8.
    Haycock, J. W. 1993. Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem. Res. 18:15-26.Google Scholar
  9. 9.
    Bobrovskaya, L., Cheah, T. B., Bunn, S. J., and Dunkley, P. R. 1998. Tyrosine hydroxylase in bovine adrenal chromaffin cells: Angiotensin II stimulated activity and phosphorylation of Ser19, Ser31, and Ser40. J. Neurochem. 70:2565-2573.Google Scholar
  10. 10.
    Bobrovskaya, L., Odell, A., Leal, R. B., and Dunkley, P. R. 2001. Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: The role of MAPK's after angiotensin II stimulation. J. Neurochem. 78:490-498.Google Scholar
  11. 11.
    Cammarota, M., Bevilaqua, L. R., Dunkley, P. R., and Rostas, J. A. P. 2001. Angiotensin II promotes the phosphorylation of cyclic AMP-response element binding protein (CREB) at Ser 133 through and ERK 1/2-dependent mechanism. J. Neurochem. 79:1122-1128.Google Scholar
  12. 12.
    Balla, T., Baukal, A. J., Eng, S., and Catt, K. J. 1991. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol. Pharmacol. 40:401-406.Google Scholar
  13. 13.
    McMillian, M. K., Hudson, P. M., Suh, H. H., Ye, H., Tuominen, R. K., and Hong, J. S. 1993. Role of omega-conotoxin GVIA-sensitive Ca2+ entry in angiotensin II-stimulated [3H]phorbol 12,13-dibutyrate binding in bovine adrenal medullary cells. J. Neurochem. 61:93-99.Google Scholar
  14. 14.
    Teschemacher, A. G. and Seward, E. P. 2000. Bidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells. J. Neurosci. 20:4776-4785.Google Scholar
  15. 15.
    Wang, J. M., Slembrouck, D., Tan, J., Arckens, L., Leenen, F. H., Courtoy, P. J., and Potter, W. P. 2002. Presence of cellular renin-angiotensin system in chromaffin cells of bovine adrenal medulla. Am. J. Physiol. Heart. Circ. Physio. 283:H1811-1818.Google Scholar
  16. 16.
    Zimlichman, R., Goldstein, D. S., Zimlichman, S., Stull, R., and Keiser, H. R. 1987. Angiotensin II increases cytosilic calcium and stimulates catecholamine release in cultured bovine adrenomedullary chromaffin cells. Cell Calcium 8:315-325.Google Scholar
  17. 17.
    McMillian, M. K., Tuominen, R. K., Hudson, P. M., Suh, H. H., and Hong, J. S. 1992. Angiotensin II receptors are coupled to omega-conotoxin-sensitive calcium influx in bovine adrenal medullary chromaffin cells. J. Neurochem. 58:1285-1291.Google Scholar
  18. 18.
    Martineau, D., Briand, R., and Yamaguchi, N. 1996. Functional evidence for calcium channels controlling angiotensin II-induced adrenal catecholamine release in vivo. Am. J. Physiol. 271:R1713-1719.Google Scholar
  19. 19.
    Cheek, T. R., Morgan, A., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. 1993. Spatial localization of agonist-induced calcium entry in bovine adrenal chromaffin cells. J. Cell Sci. 105:913-925.Google Scholar
  20. 20.
    Robinson, I. M. and Burgoyne, R. D. 1991. A distinct 2,5-di-(tert-butyl)-1,4-benzohydroquinone-sensitive calcium store in bovine adrenal chromaffin cells. FEBS Letters 289:151-154.Google Scholar
  21. 21.
    Stauderman, K. A., McKinney, R. A., and Murawsky, M. M. 1991. The role of caffeine-sensitive calcium stores in agonist-and inositol 1,4,5-trisphosphate-induced calcium release from bovine adrenal chromaffin cells. Biochem J. 278:643-650.Google Scholar
  22. 22.
    O'Sullivan, A. J., Cheek, T. R., Moreton, R. B., Berridge, M. J., and Burgoyne, R. D. 1989. Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 8:401-411.Google Scholar
  23. 23.
    Stauderman, K. A. and Pruss, R. M. 1989. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. J. Biol. Chem. 264: 18349-18355.Google Scholar
  24. 24.
    Stauderman, K. A. and Pruss, R. M. 1990. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: Comparison of the effects of histamine and angiotensin II. J. Neurochem. 54:946-953.Google Scholar
  25. 25.
    Tanaka, K., Shibuya, I., Uezono, Y., Ueta, Y., Toyohira, Y., Yanagihara, N., Izumi, F., Kanno, T., and Yamashita, H. 1998. Pituitary adenylate cyclase-activating polypeptide causes Ca2+ release from ryanodine/caffeine stores through a novel pathway independent of both inositol trisphosphates and cyclic AMP in bovine adrenal medullary cells. J. Neurochem. 70: 1652-1661.Google Scholar
  26. 26.
    Putney, J. W., Jr. 1986. A model for receptor-regulated calcium entry. Cell Calcium 7:1-12.Google Scholar
  27. 27.
    Putney, J.W., Jr. 1990. Capacitative calcium entry revisited. Cell Calcium 11:611-624.Google Scholar
  28. 28.
    Putney, J. W., Jr. 1990. Receptor-regulated calcium entry. Pharmacol. Ther. 48:427-434.Google Scholar
  29. 29.
    Plevin, R. and Boarder, M. R. 1988. Stimulation of formation of inositol phosphates in primary cultures of bovine adrenal chromaffin cells by angiotensin II, histamine, bradykinin, and carbachol. J. Neurochem. 51:634-641.Google Scholar
  30. 30.
    Sasakawa, N., Nakaki, T., Yamamoto, S., and Kato, R. 1989. Calcium uptake-dependent and-independent mechanisms of inositol trisphosphate formation in adrenal chromaffin cells: comparative studies with high K+, carbamylcholine and angiotensin II. Cell Signal 1:75-84.Google Scholar
  31. 31.
    Tuominen, R. K., Werner, M. H., Ye, H., McMillian, M. K., Hannun, Y. A., and Hong, J. S. 1993. Biphasic generation of diacylglycerol by angiotensin and phorbol ester in bovine adrenal chromaffin cells. Biochem. Biophys. Res. Commun. 190: 181-185.Google Scholar
  32. 32.
    Liu, P.-S., Lin, Y.-J., and Kao, L.-S. 1991. Caffeine-sensitive calcium stores in bovine adrenal chromaffin cells. J. Neurochem. 56:172-177.Google Scholar
  33. 33.
    Robinson, I. M., Cheek, T. R., and Burgoyne, R. D. 1992. Ca2+ influx induced by the Ca2+-ATPase inhibitors 2,5-di-(t-butyl)-1, 4-benzohydroquinone and thapsigargin in bovine adrenal chromaffin cells. Biochem. J. 288:457-463.Google Scholar
  34. 34.
    Sui, A.-L. and Kao, L.-S. 1994. Depletion and refilling of intra-cellular calcium pools in bovine chromaffin cells. Neurochem. Res. 19:753-759.Google Scholar
  35. 35.
    Powis, D. A., Clark, C. L., and O'Brien, K. J. 1996. Depleted internal store-activated Ca2+ entry can trigger neurotransmitter release in bovine chromaffin cells. Neurosci. Lett. 204: 165-168.Google Scholar
  36. 36.
    Zerbes, M., Bunn, S. J., and Powis, D. A. 1998. Histamine causes Ca2+ entry via both a store-operated and a store-independent pathway in bovine adrenal chromaffin cells. Cell Calcium 23:379-386.Google Scholar
  37. 37.
    Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W., Jr. 1989. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells: Evidence that an intracellular calcium pool, and not an inositol phosphate, regulates calcium fluxes at the plasma membrane. J. Biol. Chem. 264:12266-12271.Google Scholar
  38. 38.
    Kwan, C. Y., Takemura, H., Obie, J. F., Thastrup, O., and Putney, J. W., Jr. 1990. Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am. J. Physiol. Cell Physiol. 258: C1006-C1015.Google Scholar
  39. 39.
    Broad, L. M., Armstrong, D. L., and Putney, J. W., Jr. 1999. Role of the inositol 1,4,5-triphosphate receptor in Ca2+ feedback inhibition of calcium release-activated calcium current (lcrac). J. Biol. Chem. 274:32881-32888.Google Scholar
  40. 40.
    Livett, B. G., Mitchelhill, K. I., and Dean, D. M. 1987. Adrenal chromaffin cells-their isolation and culture. Pages 172-175. in: Poisner, A. M., Trifaro, J. M. (eds.), In vitro methods for studying secretion, Amsterdam, Elsevier Science.Google Scholar
  41. 41.
    Byron, K. L. and Taylor, C. W. 1993. Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores. J. Biol. Chem. 268: 6945-6952.Google Scholar
  42. 42.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440-3450.Google Scholar
  43. 43.
    Inesi, G. and Sagara, Y. 1992. Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch. Biochem. Biophys. 298:313-317.Google Scholar
  44. 44.
    Poulsen, J. C., Caspersen, C., Mathiason, D., East, J. M., Tunwell, R. E., Lai, F. A., Maeda, N., Mikoshiba, K., and Treiman, M. 1995. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Biochem. J. 307:749-758.Google Scholar
  45. 45.
    Cui, Y. and Pun, R. Y. K. 1994. Angiotensin II suppresses Na+ currents in bovine adrenal chromaffin cells. Peptides 15:67-72.Google Scholar
  46. 46.
    Marley, P. D., Wallace, D., Donald, A., and McKenzie, S. 2002. How does histamine evoke catecholamine secretion from bovine adrenal chromaffin cells? Ann. N. Y. Acad. Sci. 971: 148-159.Google Scholar
  47. 47.
    Stauderman, K. A., Murawsky, M. M., and Pruss, R. M. 1990. Agonist-dependent patterns of cytosolic Ca2+ changes in single bovine adrenal chromaffin cells: Relationship to catecholamine release. Cell Regulation 1:683-691.Google Scholar
  48. 48.
    Burgoyne, R. D. 1991. Control of exocytosis in arenal chromaffin cells. Biochim. Biophys. Acta. 1071:174-202.Google Scholar
  49. 49.
    Bunn, S. J., Sim, A. T. R., Herd, L. M., Austin, L. M., and Dunkley, P. R. 1995. Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: The role of intracellular calcium in the histamine H1 receptor-stimulated phosphorylation of Ser8, Ser19, Ser31 and Ser40. J. Neurochem. 64: 1370-1378.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • David A. Powis
    • 1
  • Mariann Zerbes
    • 1
  • Lynn M. Herd
    • 1
  • Peter R. Dunkley
    • 1
  1. 1.School of Biomedical Sciences, Faculty of HealthThe University of NewcastleNew South WalesAustralia

Personalised recommendations