Advertisement

On the Range of Applicability of the Reissner–Mindlin and Kirchhoff–Love Plate Bending Models

  • Douglas N. Arnold
  • Alexandre L. Madureira
  • Sheng Zhang
Article

Abstract

We show that the Reissner–Mindlin plate bending model has a wider range of applicability than the Kirchhoff–Love model for the approximation of clamped linearly elastic plates. Under the assumption that the body force density is constant in the transverse direction, the Reissner–Mindlin model solution converges to the three-dimensional linear elasticity solution in the relative energy norm for the full range of surface loads. However, for loads with a significant transverse shear effect, the Kirchhoff–Love model fails.

plate Kirchhoff–Love Reissner–Mindlin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and Justification of Plate Models by Variational Methods, CRM Proceedings and Lecture Notes. Centre de Recherches Mathematiques (1999).Google Scholar
  2. 2.
    D.N. Arnold and R.S. Falk, Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27 (1999) 486–514.MathSciNetCrossRefGoogle Scholar
  3. 3.
    D.N. Arnold, R.S. Falk and R. Winther, Preconditioning discrete approximations of the Reissner-Mindlin plate model. Math. Modelling Numer. Anal. 31 (1997) 517–557.zbMATHMathSciNetGoogle Scholar
  4. 4.
    P.G. Ciarlet, Mathematical Elasticity, Vol. II: Theory of Plates. North-Holland, Amsterdam (1997).Google Scholar
  5. 5.
    M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate, I. Optimal error estimates. Asymptotic Anal. 13 (1996) 167–197.zbMATHMathSciNetGoogle Scholar
  6. 6.
    P. Destuynder, Explicit error bounds for the Kirchhoff-Love and Reissner-Mindlin plate models. C. R. Acad. Sci. Series I 325 (1997) 233–238.zbMATHMathSciNetADSGoogle Scholar
  7. 7.
    T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs, NJ (1987).zbMATHGoogle Scholar
  8. 8.
    D. Morgenstern, Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie. Arch. Rational Mech. Anal. 4 (1959) 145–152.zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    A. Raoult, Construction d'un modèle d'évolution de plaques avec termes d'inertie de rotation. Annali di Matematica Pura ed Applicata 139 (1985) 361–400.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Reissner, Reflections on the theory of elastic plates. Appl. Mech. Rev. 38 (1985) 1453–1464.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Douglas N. Arnold
    • 1
  • Alexandre L. Madureira
    • 2
  • Sheng Zhang
    • 3
  1. 1.IMA, University of MinnesotaMinneapolisUSA
  2. 2.LNCC, DMA, Avenida Getulio VargasRJ, Brasil
  3. 3.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations