Letters in Mathematical Physics

, Volume 64, Issue 1, pp 7–21

An Inverse Problem for an Harmonic Oscillator Perturbed by Potential: Uniqueness

  • Dmitri Chelkak
  • Pavel Kargaev
  • Evgeni Korotyaev

Abstract

Consider the perturbed harmonic oscillator Ty = -y" + x2y + q(x)y on L2(R) where the real potential q satisfy some assumption on infinity (the case q ∈ L2(R), (∣t∣+1)-rdt), r < 1 is covered).

inverse problem harmonic oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bateman, H.: Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.Google Scholar
  2. 2.
    Chelkak, D., Kargaev, P. and Korotyaev, E.: Inverse problem for harmonic oscillator perturbed by potential. Characterization, Preprint of SFB 288, Berlin, 2002.Google Scholar
  3. 3.
    Gurarie, D.: Asymptotic inverse spectral problem for anharmonic oscillators, Comm. Math. Phys. 112(3) (1987), 491–502.Google Scholar
  4. 4.
    Gurarie, D.: Asymptotic inverse spectral problem for anharmonic oscillators with odd potentials, Inverse Problems 5(3) (1989), 293–306.Google Scholar
  5. 5.
    Gesztesy, F. and Simon, B.: Uniqueness theorems in inverse spectral theory for one dimensional Schrödinger operators, Trans. Amer. Math. Soc. 348(1) (1996), 349–373.Google Scholar
  6. 6.
    Gesztesy, F. and Simon, B.: The xi function, Acta Math. 176(1) (1996), 49–71.Google Scholar
  7. 7.
    Gesztesy, F. and Simon, B.: On local Borg—Marchenko uniqueness results, Comm. Math. Phys. 211(2) (2000), 273–287.Google Scholar
  8. 8.
    Levitan, B.: Sturm—Liouville operators on the entire real axis with the same discrete spectrum, Math. USSR-Sb. 60(1) (1988), 77–106.Google Scholar
  9. 9.
    McKean, H. P. and Trubowitz, E.: The spectral class of the quantum-mechanical harmonic oscillator, Comm. Math. Phys. 82(4) (1981/82), 471–495.Google Scholar
  10. 10.
    Olver, F.: Two inequalities for parabolic cylinder functions, Proc. Cambridge Philos. Soc. 57 (1961), 811–822.Google Scholar
  11. 11.
    Pöschel, P. and Trubowitz, E.: Inverse Spectral Theory, Academic Press, Boston, 1987.Google Scholar
  12. 12.
    Reed, M. and Simon, B.: Methods of Modern Mathematical Physics, Vol.II: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Dmitri Chelkak
    • 1
    • 2
  • Pavel Kargaev
    • 2
  • Evgeni Korotyaev
    • 3
  1. 1.Institut für MathematikUniversität PotsdamGermany
  2. 2.Faculty of Math. and Mech.St-Petersburg State UniversityRussia
  3. 3.Institut für MathematikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations