Advertisement

Photosynthesis Research

, 76:329 | Cite as

Crassulacean acid metabolism photosynthesis: `working the night shift'

  • Clanton C. Black
  • C. Barry Osmond
Article

Abstract

Crassulacean acid metabolism (CAM) can be traced from Roman times through persons who noted a morning acid taste of some common house plants. From India in 1815, Benjamin-Heyne described a `daily acid taste cycle' with some succulent garden plants. Recent work has shown that the nocturnally formed acid is decarboxylated during the day to become the CO2 for photosynthesis. Thus, CAM photosynthesis extends over a 24-hour day using several daily interlocking cycles. To understand CAM photosynthesis, several landmark discoveries were made at the following times: daily reciprocal acid and carbohydrate cycles were found during 1870 to 1887; their precise identification, as malic acid and starch, and accurate quantification occurred from 1940 to 1954; diffusive gas resistance methods were introduced in the early 1960s that led to understanding the powerful stomatal control of daily gas exchanges; C4 photosynthesis in two different types of cells was discovered from 1965 to ∼1974 and the resultant information was used to elucidate the day and night portions of CAM photosynthesis in one cell; and exceptionally high internal green tissue CO2 levels, 0.2 to 2.5%, upon the daytime decarboxylation of malic acid, were discovered in 1979. These discoveries then were combined with related information from C3 and C4 photosynthesis, carbon biochemistry, cellular anatomy, and ecological physiology. Therefore by ∼1980, CAM photosynthesis finally was rigorously outlined. In a nutshell, 24-hour CAM occurs by phosphoenol pyruvate (PEP) carboxylase fixing CO2(HCO3 ) over the night to form malic acid that is stored in plant cell vacuoles. While stomata are tightly closed the following day, malic acid is decarboxylated releasing CO2 for C3 photosynthesis via ribulose bisphosphate carboxylase oxygenase (Rubisco). The CO2 acceptor, PEP, is formed via glycolysis at night from starch or other stored carbohydrates and after decarboxylation the three carbons are restored each day. In mid to late afternoon the stomata can open and mostly C3 photosynthesis occurs until darkness. CAM photo-synthesis can be both inducible and constitutive and is known in 33 families with an estimated 15 to 20 000 species. CAM plants express the most plastic and tenacious photosynthesis known in that they can switch photosynthesis pathways and they can live and conduct photosynthesis for years even in the virtual absence of external H2O and CO2, i.e., CAM tenaciously protects its photosynthesis from both H2O and CO2 stresses.

Bill Bradbeer Bryophyllum CAM carbohydrates Nancy Carnal CO2 fixation Bill Cockburn Crassulacean acid metabolism daily cycle Charles Darwin diffusive gas resistance fructose 2 6-bisphosphate glucans Neimiah Grew Benjamin Heyne Kalanchoe Manfred Kluge Mac Laetsch malic acid Opuntia pyrophosphate Orlando Queiroz Stanley Ranson respiratory quotient starch stomata Sedum Meirion Thomas Irwin Ting Hubert Vickery David Walker Klaus Winter 

References

  1. Bender MM (1968) Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10: 468–472Google Scholar
  2. Bender MM, Rouhani I, Vines HM and Black CC (1973) 13C/12C ratio changes in Crassulacean acid metabolism plants. Plant Physiol 52: 427–430PubMedGoogle Scholar
  3. Bennet-Clark TA (1933a) The role of organic acids in plant metabolism. Part I. New Phytol 32: 37–71CrossRefGoogle Scholar
  4. Bennet-Clark TA (1933b) The role of the organic acids in plant metabolism. Part II. New Phytol 32: 128–161CrossRefGoogle Scholar
  5. Bennet-Clark TA (1949) Organic acids of plants. Ann Rev Biochem 18: 639–654CrossRefGoogle Scholar
  6. Black CC (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24: 253–286CrossRefGoogle Scholar
  7. Black CC, Chen TM and Brown RH (1969) Biochemical basis for plant competition. Weed Sci 17: 338–344Google Scholar
  8. Black CC, Mustardy L, Sung SS, Kormanik PP, Xu DP and Paz N (1987) Regulation and roles for alternative pathways of hexose metabolism in plants. Physiol Plant 69: 387–394CrossRefGoogle Scholar
  9. Black CC, Loboda T, Chen JQ and Sung SJS (1995) Can sucrose cleavage enzymes serve as markers for sink strength and is sucrose a signal molecule during plant sink development. In: Pontis HG, Salerno GL and Echevevria E (eds) Proceedings of First International Symposium on Sucrose Metabolism, pp 49–64. American Society of Plant Physiologists, Rockville, MarylandGoogle Scholar
  10. Bradbeer JW, Ranson SL and Stiller M (1958) Malate synthesis in Crassulacean leaves. I. The distribution of 14C in malate of leaves exposed in 14CO2 in the dark. Plant Physiol 33: 66–70PubMedGoogle Scholar
  11. Burris RH and Black CC (eds) (1976) CO2 Metabolism and Plant Productivity. University Park Press, Baltimore, Maryland, 431ppGoogle Scholar
  12. Carnal NW and Black CC (1979) Pyrophosphate-dependent phosphofructokinase, A new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Comm 86: 20–26PubMedCrossRefGoogle Scholar
  13. Carnal NW and Black CC (1983) Phosphofructokinase activities in photosynthetic organisms: the occurrence of pyrophosphatedependent 6–phosphofructokinase in plants and algae. Plant Physiol 71: 150–155PubMedGoogle Scholar
  14. Chang NK, Vines HM and Black CC (1981) Nitrate assimilation and Crassulacean acid metabolism in Kalanchoe fedtschenkoi marginate leaves. Plant Physiol 68: 464–468PubMedGoogle Scholar
  15. Cockburn W, Ting IP and Sternberg LO (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in Crassulacean acid metabolism plants. Plant Physiol 63: 1029–1032PubMedGoogle Scholar
  16. Darwin C (1877) Communication to Gardner's Chronicle, 29 Dec. Collected Papers of Charles Darwin. Plant photo on the cover page of Science (#4291) (1979). Book Review Vol 196 (#4291), pp 784–785Google Scholar
  17. DeSaussure T (1804) Recherches chimiques sur la vegetation, p 25. Nyon, ParisGoogle Scholar
  18. Dittrich P (1975) Nicotinamide adenine dinucleotide specific ‘malic’ enzyme in Kalanchoe daigremontiana and other plants exhibiting Crassulacean acid metabolism. Plant Physiol 57: 310–314Google Scholar
  19. Dittrich P, Campbell WH and Black CC Jr. (1973) Phosphoenolpyruvate carboxykinase in plants exhibiting Crassulacean acid metabolism. Plant Physiol 52: 357–361PubMedGoogle Scholar
  20. Ekern PC (1965) Evapotranspiration of pineapple in Hawaii. Plant Physiol 40: 736–739PubMedGoogle Scholar
  21. Freitag H and Stichler W (2002) Bienertia cycloptera Bunge ex Boiss, Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biol 4: 121–132Google Scholar
  22. Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal resistance. Meded Landbouwhogesch Wageningen 59: 1–68Google Scholar
  23. Gregory FG, Spear I and Thimann KV (1954) The interrelation between CO2 metabolism and photoperiodism in Kalanchoe. Plant Physiol 29: 220–229PubMedGoogle Scholar
  24. Grew N (1682) An Idea of a Philosophical History of Plants, 2nd ed. Royal Society, London, 24 ppGoogle Scholar
  25. Hartsock TL and Nobel PS (1976) Watering converts a CAM plant to daytime CO2 uptake. Nature 262: 574–576CrossRefGoogle Scholar
  26. Hatch MD (2002) C4 Photosynthesis, discovery and resolution. Photosynth Res 73: 251–256PubMedCrossRefGoogle Scholar
  27. Hatch MD, Osmond CB and Slatyer RO (eds) (1970) Photosynthesis and Photorespiration, Wiley-Interscience New York, 558 ppGoogle Scholar
  28. Heyne B (1815) On the deoxidation of the leaves of Cotyledon calycina. Trans Linn Soc London 11 pII: 213–215Google Scholar
  29. Joshi MC, Boyer JS and Kramer PJ (1965) Growth, carbon dioxide exchange, transpiration and transpiration ratio of pineapple. Bot Gaz 126: 174–179CrossRefGoogle Scholar
  30. Kamen MD (1963) Primary Processes in Photosynthesis. Academic Press, New York, 183 ppGoogle Scholar
  31. Kenyon WH, Kringstad R and Black CC (1978) Diurnal changes in the malic acid content of vacuoles isolated from leaves of the Crassulacean acid metabolism plant, Sedum telephium. FEBS Lett 94: 281–283CrossRefGoogle Scholar
  32. Kluge M and Osmond CB (1971) Pyruvate, Pi dikinase in Crassulacean acid metabolism. Naturwissenschaften 58: 414–415CrossRefGoogle Scholar
  33. Kluge M and Osmond CB (1972) Studies on phosphoenolpyruvate carboxylase and other enzymes of Crassulacean acid metabolism of Bryophyllum tubiflorum and Sedum praealtum. Z Pflanzenphysiol 66: 97–105Google Scholar
  34. Kluge M and Ting IP (1978) Crassulacean Acid Metabolism. Ecological Studies 30: 1–209. Springer-Verlag, BerlinGoogle Scholar
  35. Kraus G (1884) Ñeber dieWasservertheilungen der Pflanze. IV. Die Acidität des Zellsaftes. Abh Der Naturforsch Ges Halle 16: 141–205Google Scholar
  36. Link HF (1819) Zusatz (to translation of Heyne's paper). Jahrbücher der Gewächskunde von Sprengel, Sehrader und Link 1: 73–76Google Scholar
  37. Maxwell K, von Caemmerer S and Evans JR (1997) Is low internal conductance to CO2 diffusion a consequence of succulence in plants with Crassulacean acid metabolism? Aust J Plant Physiol 24: 777–786CrossRefGoogle Scholar
  38. Mayer A (1875) Ñber die Bedeutung der organischen Säuren in den Pflanzen. Landw Versuchsstat 18: 410–452Google Scholar
  39. Mayer A (1887) Die Sauerstoffausscheidung einiger dickblättriger Pflanzen bei Abwesenheit von Kohlensäure und die physiologische Bedeutung dieser Erscheinung. Landwirtschaftl Vers Stn 34: 127–143Google Scholar
  40. Moyse A (1955) Le metabolisme des acides organiques chez Bryophyllum (Crassulaceae). II. Les variations de l'acidité et la photosynthèse, en fonction de la tension d'oxygène. Physiol Plant 8: 478–492CrossRefGoogle Scholar
  41. Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5: 75–80PubMedCrossRefGoogle Scholar
  42. Nishida K (1963) Studies on the re-assimilation of respiratory CO2 in illuminated leaves. Plant Cell Physiol 3: 111–124Google Scholar
  43. Nobel PS, Bobich EG (2002) Initial net CO2 uptake responses and root growth for a CAM community placed in a closed environment. Ann Bot 90: 593–598PubMedCrossRefGoogle Scholar
  44. Nuernbergk EL (1961) Endogener Rhythmus und CO2 Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus. Planta 56: 28–70CrossRefGoogle Scholar
  45. O'Leary MH and Osmond CB (1980) Diffusional contribution to carbon isotope fractionation during dark CO2 fixation in CAM plants. Plant Physiol 66: 931–934PubMedGoogle Scholar
  46. Osmond CB (1976) CO2 assimilation and dissimilation in the light and dark in CAM plants. In: RH Burris and CC Black (eds) CO2 Metabolism and Plant Productivity, pp 217–233. University Park Press, Baltimore, MarylandGoogle Scholar
  47. Osmond CB (1978) Crassulacean acid metabolism - a curiosity in context. Annu Rev Plant Physiol 29: 379–414CrossRefGoogle Scholar
  48. Osmond CB, Allaway WG, Sutton BG, Troughton JH, Queiroz O, Lüttge U and Winter K (1973) Carbon isotope discrimination in photosynthesis of CAM plants. Nature 246: 41–42CrossRefGoogle Scholar
  49. Porter HK and Ranson SL (1980) Meirion Thomas. Biogr Mem R Soc XX: 547–568Google Scholar
  50. Pucher GW and Vickery HB (1942) On the identity of the so-called Crassulacean malic acid with isocitric acid. J Biol Chem 145: 525–532Google Scholar
  51. Pucher GW, Sherman CC and Vickery HB (1936) Colorimetric determination of citric acid. J Biol Chem 113: 235–245Google Scholar
  52. Pucher GW, Wakeman AJ and Vickery HB (1941) Organic acids in plant tissue. Modifications of analytical methods. Ind Eng Chem Anal Ed 13: 244–246CrossRefGoogle Scholar
  53. Pucher GW, Leavenworth CS, Ginter WD and Vickery HB (1947) Studies in the metabolism of crassulacean plants: the diurnal variation in organic acid and starch content of Bryophyllum calycinum. Plant Physiol 22: 360–376PubMedGoogle Scholar
  54. Queiroz O (1967) Recherche d'un modèle enzymatique pour le déterminisme de la désacidification diurne chez les Crassulacées. CR Acad Sci 265: 1928–1931Google Scholar
  55. Ranson SL and Thomas M (1960) Crassulacean acid metabolism. Annu Rev Plant Physiol 11: 81–110CrossRefGoogle Scholar
  56. Reinfelder JR, Kraepiel AML and Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407: 996–999PubMedCrossRefGoogle Scholar
  57. Rouhani I (1972) Pathways of carbon metabolism in spongy mesophyll cells isolated from Sedum telephium leaves and their relationship to Crassulacean acid metabolism plants. PhD thesis, University of Georgia, AthensGoogle Scholar
  58. Saltman P, Kunitake G, Spolter H and Stitt C (1956) The dark fixation of CO2 by succulent leaves: the first products. Plant Physiol 31: 464–468PubMedCrossRefGoogle Scholar
  59. Smith BN and Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47: 380–384PubMedGoogle Scholar
  60. Smith JAC and Winter K (1996) Taxonomic distribution of Crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism, pp 427–436. Springer-Verlag, BerlinGoogle Scholar
  61. Smyth DA and Black CC (1984) Measurement of the pyrophosphate content of plant tissues. Plant Physiol 75: 862–864PubMedGoogle Scholar
  62. Spalding MH, Stumpf DK, Ku MSB, Burris RH and Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC. Aust J Plant Physiol 6: 557–67Google Scholar
  63. Sugiyama T, Laetsch WM (1975) Occurrence of pyruvate orthophosphate dikinase in the succulent plant, Kalanchoe daigremontiana Hamet et Perr. Plant Physiol 56: 605–607PubMedGoogle Scholar
  64. Thomas M and Beevers H (1949) Physiological studies on acid metabolism in green plants. II. Evidence of CO2 fixation in Bryophyllum and the study of diurnal variation of acidity in this genus. New Phytol 48: 421–447CrossRefGoogle Scholar
  65. Ting IP and Gibbs M (eds) (1982) Crassulacean Acid Metabolism. American Society of Plant Physiology, Rockville, Maryland, 308ppGoogle Scholar
  66. Ting IP and Hanscom Z (1977) Induction of acid metabolism in Portulacaria afra. Plant Physiol 59: 511–514PubMedGoogle Scholar
  67. Vickery HB (1972) A chemist among plants. Annu Rev Plant Physiol 23: 1–28CrossRefGoogle Scholar
  68. Vickery HB, and Pucher GW (1940) Organic acids of plants. Ann Rev Biochem 9: 529–544CrossRefGoogle Scholar
  69. Voznesenskaya EV, Franceschi V, K iirats O, Freitag H and Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414: 543–546PubMedCrossRefGoogle Scholar
  70. Walker DA (1956) Malate synthesis in a cell free extract from a Crassulacean plant. Nature 178: 593–594CrossRefGoogle Scholar
  71. Warren DM and Wilkins MB (1961) An endogenous rhythm in the rate of dark fixation of carbon dioxide in leaves of Bryophyllum fedtschenkoi. Nature 191: 686–688CrossRefGoogle Scholar
  72. Winter K and Smith JAC (eds) (1996) Crassulacean Acid Metabolism.Springer-Verlag, Heidelberg, 436 ppGoogle Scholar
  73. Winter K and von Willert DJ (1972) NaCl-induzierter crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z Pflanzenphysiol 67: 166–170Google Scholar
  74. Winter K, Lüttge U, Winter E and Troughton JH (1978) Seasonal shift from C3 photo-synthesis to Crassulacean acid metabolism in Mesembryanthemum crystallinum in its native environment. Oecologia 34: 225–237CrossRefGoogle Scholar
  75. Wolf J (1937) Beiträge zur Kenntnis des Säurestoffwechsels Sukkulenter Crassulaceen. II. Untersuchungen über Beziehungen zwischen Sedoheptose und Äpfel-und Zitronensäure. Planta 29: 314–324CrossRefGoogle Scholar
  76. Wolf J (1938) Beiträge zur Kenntnis des Säurestoffwechsels Sukkulenter Crassulaceen. III. Stoffliche zusammenhänge zwischen gärfähigen Kohlenhydraten und Organischen Säuren. Planta 29: 314–324CrossRefGoogle Scholar
  77. Wolf J (1949) Beiträge zur Kenntnis des Säurestoffwechsels sukkulenter. Crassulaceen. VI. Mitt.: neuere Vorstellungen vom Chemismus des Säurestoffwechsels. Planta 37: 510–534CrossRefGoogle Scholar
  78. Wolf J (1960) Der diurnale Säurerhythmus. In: Ruhland W (ed) Encyclopedia of Plant Physiology, Vol 12, pp 809–889. Springer-Verlag, BerlinGoogle Scholar
  79. Wood HG and Werkmann CH (1938) The utilization of carbon dioxide by propionic acid bacteria. Biochem J 32: 1262–1271PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Biochemistry and Molecular Biology DepartmentUniversity of GeorgiaAthensUSA
  2. 2.Department of Earth and Environmental Studies, Biosphere 2 CenterColumbia UniversityOracleUSA

Personalised recommendations