Advertisement

Enhanced HAPEX topography: Comparison of osteoblast response to established cement

  • M. J. DalbyEmail author
  • W. Bonfield
  • L. Di Silvio
Article

Abstract

The use of poly(methylmethacrylate) PMMA cement by Charnley in the 1960s revolutionized orthopaedic medicine. Since this time, however, little has changed. The development of bioactive composites, such as HAPEX™ (a composite of 40% vol hydroxyapatite (HA) in a polyethylene matrix) have potential in orthopaedic applications. The composite has been shown to allow direct bone bonding in vivo, and in vitro studies have shown preferential attachment to HA exposed on the composite surface. In vitro study has also shown that altering the topography HAPEX™ can enhance osteoblast response. This study uses microscopical investigation of osteoblast cytoskeleton, and biochemical measurement of proliferation (by thymidine incorporation) and phenotype (by alkaline phosphatase activity) to compare primary human osteoblast (HOB) activity on HAPEX™ and PMMA cement. The study shows large increases in HOB response to the new generation material compared to PMMA, the current implant standard.

Keywords

PMMA Hydroxyapatite Thymidine Methylmethacrylate Alkaline Phosphatase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Walker, S. F. Mai, A. G. Coob, G. Bentley and J. Hua, JBJS 74B (1995) 705.Google Scholar
  2. 2.
    J. Charnley, JBJS 42B (1960) 28.Google Scholar
  3. 3.
    Y. K. Liu, J. B. Park, G. O. Njus and D. Stienstra, J. Biomed. Mater. Res. 21 (1987) 247.Google Scholar
  4. 4.
    T. Kindt-Larsen, D. B. Smith and J. S. Jensen, J. Appl. Biomater. 6 (1995) 75.Google Scholar
  5. 5.
    T. P. Harrigan, J. A. Kareth, D. O. O'Connor, D. W. Burke and W. H. Harris, J. Orthop. Res. 10 (1992) 134.Google Scholar
  6. 6.
    M. A. R. Freeman, G. W. Bradley and P. A. Revell, JBJS 64B (1982) 489.Google Scholar
  7. 7.
    J. S. Wang, H. Franzen, E. Jonsson and L. Lidgren, Acta. Orthop. Scand. 64 (1993) 143.Google Scholar
  8. 8.
    W. Bonfield, M. D. Grynpas, A. E. Tully, J. Bowman and J. Abram, Biomaterials 2 (1981) 185.Google Scholar
  9. 9.
    P. K. Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke and C. J. Pirie, J. Arthroplasty 6 (1991) 51.Google Scholar
  10. 10.
    H. Ohgushi, Y. Dohi, T. Katuda, S. Tamai, S. Tabata and Y. Suwa, J. Biomed. Mater. Res. 32 (1996) 333.Google Scholar
  11. 11.
    T. Gruen, G. M. Mcneice and H. C. Amstutz, Clin. Orthop. 141 (1979) 17.Google Scholar
  12. 12.
    A. S. Posner and F. Betts, Acc. Chem. Res., 8 (1975) 273.Google Scholar
  13. 13.
    R. N. Downes, S. Vardy, K. E. Tanner and W. Bonfield, Bioceramics 4 (1991) 239.Google Scholar
  14. 14.
    J. Huang, M. Wang, K. E. Tanner, W. Bonfield and L. Di Silvio, J. Mater. Sci. Mater. Med. 8 (1997) 775.Google Scholar
  15. 15.
    A. S. G. Curtis and C. D. W. Wilkinson, Trends Biotechnol. 19 (2001) 97.Google Scholar
  16. 16.
    A. M. Rajnicek and C. D. Mccraig, J. Cell. Sci. 110 (1997) 2915.Google Scholar
  17. 17.
    M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Exp. Cell. Res. 276 (2002) 1.Google Scholar
  18. 18.
    M. J. Dalby, M. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Biomaterials 23 (2002) 2945.Google Scholar
  19. 19.
    B. A. Dalton, M. D. M. Evans, G. A. Mcfarland and J. G. Steele, J. Biomed. Mater. Res. 45 (1999) 384.Google Scholar
  20. 20.
    C. Gray, A. Boyde and S. J. Jones, Bone 18 (1996) 115.Google Scholar
  21. 21.
    M. J. Dalby, M. V. Kayser, W. Bonfield and L. Di Silvio, Biomaterials 23 (2002) 681.Google Scholar
  22. 22.
    M. J. Dalby, L. Di Silvio, N. Gurav, B. Annaz, M. V. Kayser and W. Bonfield, Tissue Eng. 8 (2002) 467.Google Scholar
  23. 23.
    M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 23 (2002) 569.Google Scholar
  24. 24.
    M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 22 (2001) 1739.Google Scholar
  25. 25.
    M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, Biomaterials 23 (2002) 569.Google Scholar
  26. 26.
    M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, J. Mater. Sci. Mater. Med. 10 (1999) 793.Google Scholar
  27. 27.
    M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, J. Mater. Sci. Mater. Med. 13 (2002) 311.Google Scholar
  28. 28.
    L. Di Silvio and N. GuravHuman Cell Culture (Kluwer Academic Publishers, London, 2001) 221.Google Scholar
  29. 29.
    B. Kasemo and J. Lausmaa, Environ. Health Prospects 102 (1994) 878.Google Scholar
  30. 30.
    L. Di Silvio, M. J. Dalby and W. Bonfield, Biomaterials 23 (2002) 101.Google Scholar
  31. 31.
    K. Burridge and M. Chzanowska-Wodnick, Annu. Rev. Cell Dev. Biol. 12 (1996) 463.Google Scholar
  32. 32.
    R. Sinha, F. Morris, A. Suken, S. Shah and R. Tuan, Clin. Orthop. 305 (1994) 258.Google Scholar
  33. 33.
    R. L. Juliano and S. Haskill, J. Cell. Biol. 120 (1993) 577.Google Scholar
  34. 34.
    P. J. Marie, Calcif. Tissue Int. 56 (1995) supplement.Google Scholar
  35. 35.
    E. A. Cowles, M. E. Derome, G. Pastizzo, L. L. Brailey and G. A. Gronowicz, Calcif. Tissue Int. 62 (1998) 74.Google Scholar
  36. 36.
    S. Y. AliBone Biology and Skeletal Disorders (Carfax, Abingdon, UK, 1992) 19.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Institute of Orthopaedics, IRC in Biomedical Materials, Royal National Orthopaedic HospitalMiddlesexUK
  2. 2.IRC in Biomedical Materials, Queen Mary and Westfield CollegeLondonUK

Personalised recommendations