Advertisement

Chromosome Research

, Volume 11, Issue 6, pp 605–618 | Cite as

Reconstruction of the ancestral karyotype of eutherian mammals

  • F. Richard
  • M. Lombard
  • B. Dutrillaux
Article

Abstract

Applying the parsimony principle, i.e. that chromosomes identical in species belonging to different taxa were likely to be present in their common ancestor, the ancestral karyotype of eutherian mammals (about 100 million years old) was tentatively reconstructed. Comparing chromosome banding with all ZOO-FISH data from literature or studied by us, this reconstruction can be proposed with only limited uncertainties. This karyotype comprised 50 chromosomes of which 40–42 were acrocentrics. Ten ancestral pairs of chromosomes were homologous to a single human chromosome: 5, 6, 9, 11, 13, 17, 18, 20, X and Y (human nomenclature). Nine others were homologous to a part of a human chromosome: 1p+q (proximal), 1q, 2p+q (proximal), 2q, part of 7, 8q, 10p, 10q and 19p (human nomenclature). Finally, seven pairs of chromosomes, homologs to human chromosomes 3 + 21, 4 + 8p, part of 7 + 16p, part of 12 + part of 22 (twice), 14+15, 16q+19q, formed syntenies disrupted in man.

ancestral chromosomes chromosome painting comparative cytogenetics Eutheria fluorescence in-situ hybridization mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11: 1005–1017.PubMedCrossRefGoogle Scholar
  2. Best RG, Diamond D, Crawford E et al. (1998) Baboon/human homologies examined by spectral karyotyping (SKY): a visual comparison. Cytogenet Cell Genet 82: 83–87.PubMedCrossRefGoogle Scholar
  3. Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81: 18–25.PubMedCrossRefGoogle Scholar
  4. Buckland RA, Evans HJ (1978) Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet 21: 42–63.PubMedGoogle Scholar
  5. Burkin DJ, Yang F, Broad TE et al. (1997) Use oft he Indian muntjac idiogram to align conserved chromosomal segments in sheep and human genomes by chromosome painting. Genomics 46: 143–147.PubMedCrossRefGoogle Scholar
  6. Chowdhary BP, Raudsepp T, Fronicke L, Scherthan H (1998) Emerging patterns ofc omparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577–589.PubMedGoogle Scholar
  7. Couturier J, Dutrillaux B (1986) Evolution chromosomique chez les Carnivores. Mammalia 50 (special issue): 124–162.Google Scholar
  8. Di Berardino D, Hayes H, Fries R, Long S (1990) International system for cytogenetic nomenclature of domestic animals. ISCNDA (1989). Cytogenet Cell Genet 53: 65–79.Google Scholar
  9. Dixkens C, Klett C, Bruch J et al. (1998) ZOO-FISH analysis in insectivores: “Evolution extols the virtue oft he status quo”. Cytogenet Cell Genet 80: 61–67.PubMedCrossRefGoogle Scholar
  10. Dutrillaux B (1979a) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48: 251–314.PubMedCrossRefGoogle Scholar
  11. Dutrillaux B (1979b) Very large analogy ofc hromosome banding between Cebus capucinus (Platyrrhini) and man. Cytogenet Cell Genet 24: 84–94.PubMedGoogle Scholar
  12. Dutrillaux B, Couturier J (1981) La Pratique de l'Analyse Chromosomique Paris: Masson.Google Scholar
  13. Dutrillaux B, Couturier J (1983) The ancestral karyotype of Carnivora: comparison with that ofpl atyrrhine monkeys. Cytogenet Cell Genet 35: 200–208.PubMedGoogle Scholar
  14. Dutrillaux B, Rethore MO, Lejeune J (1975) [Comparison of the karyotype oft he orangutan (Pongo pygmaeus) to those ofm an, chimpazee, and gorilla]. Ann Genet 18: 153–161.PubMedGoogle Scholar
  15. Dutrillaux B, Viegas-Pequignot E, Couturier J et al. (1980) [Great homology ofc hromosome banding oft he rabbit (Oryctolagus cuniculus) and primates, including man (author's transl)]. Ann Genet 23: 22–25.PubMedGoogle Scholar
  16. Dutrillaux B, Couturier J, Viegas-Pequignot E (1981) Chromosomal evolution in primates. In: Chromosomes Today. London: George Allen & Unwin, pp. 176–191.Google Scholar
  17. Dutrillaux B, Couturier J, Viegas-Pequignot E, Muleris M (1982) Cytogenetic aspects ofpr imate evolution. In: Human Genetics. New York: Alan R. Liss, pp 183–194.Google Scholar
  18. Dutrillaux B, Couturier J, Viegas-Pequignot E (1986) Evolution chromosomique des Platyrhiniens. Mammalia 50 (special issue): 56–81.Google Scholar
  19. Fronicke L, Muller-Navia J, Romanakis K, Scherthan H(1997) Chromosomal homeologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma 106: 108–113.PubMedCrossRefGoogle Scholar
  20. Gustavsson I, Hageltorn M, Iannuzzi L et al. (1976) Staining technique for definite identification of individual cattle chromosomes in routine analysis. J Hered 67: 175–178.PubMedGoogle Scholar
  21. Haig D (1999) A briefhi story of human autosomes. Phil Trans R Soc Lond B 354: 1447–1470.CrossRefGoogle Scholar
  22. Hameister H, Klett C, Bruch J et al. (1997) Zoo-FISH analysis: the American mink (Mustela vison) closely resembles the cat karyotype. Chromosome Res 5: 5–11.PubMedCrossRefGoogle Scholar
  23. Hayes H (1995) Chromosome painting with human chromosome-specific DNA libraries reveals the extent and distribution ofc onserved segments in bovine chromosomes. Cytogenet Cell Genet 71: 168–174.PubMedGoogle Scholar
  24. Iannuzzi L, Di Meo GP, Perucatti A, Ferrara L (1990) The high resolution G-and R-banding pattern in chromosomes of river buffalo (Bubalus bubalis L.). Hereditas 112: 209–215.PubMedGoogle Scholar
  25. Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T (1998) ZOO-FISH and R-banding reveal extensive conservation ofhu man chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet Cell Genet 82: 210–214.PubMedCrossRefGoogle Scholar
  26. Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611–8615.PubMedCrossRefGoogle Scholar
  27. Korstanje R, O'Brien PC, Yang F et al. (1999) Complete homology maps oft he rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86: 317–322.PubMedCrossRefGoogle Scholar
  28. Maccarone P, Watson JM, Francis D et al. (1992) The evolution ofhu man chromosome 21: evidence from in situ hybridization in marsupials and a monotreme. Genomics 13: 1119–1124.PubMedCrossRefGoogle Scholar
  29. Matthey R (1973) The chromosome formulae of eutherian mammals. In: Chiarelli A, Capanna E. eds. Cytotaxonomy and Vertebrate Evolution, Academic Press, London: pp 531–616.Google Scholar
  30. Muller S, O'Brien PC, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78: 260–271.PubMedGoogle Scholar
  31. Muller S, Stanyon R, O'Brien PC et al. (1999) Defining the ancestral karyotype ofa ll primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108: 393–400.PubMedCrossRefGoogle Scholar
  32. Muller S, Stanyon R, Finelli P, Archidiacono N, Wienberg J (2000) Molecular cytogenetic dissection ofh uman chromosomes 3 and 21 evolution. Proc Natl Acad Sci USA 97: 206–211.PubMedCrossRefGoogle Scholar
  33. Mural RJ, Adams MD, Myers EW et al. (2002) A comparison ofwh ole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296: 1661–1671.PubMedCrossRefGoogle Scholar
  34. Murphy WJ, Sun S, Chen Z et al. (2000) A radiation hybrid map oft he cat genome: implications for comparative mapping. Genome Res 10: 691–702.PubMedCrossRefGoogle Scholar
  35. Murphy WJ, Eizirik E, Johnson WE et al. (2001a) Molecular phylogenetics and the origins ofpl acental mammals. Nature 409: 614–618.PubMedCrossRefGoogle Scholar
  36. Murphy WJ, Stanyon R, O'Brien SJ (2001b) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: reviews0005.Google Scholar
  37. O'Brien SJ, Graves JA (1991) Report oft he committee on comparative gene mapping. Cytogenet Cell Genet 58: 1124–1151.Google Scholar
  38. Ohno S, Beçak W, Beçak ML (1964) X-autosome ratio and the behavior pattern ofi ndividual X-chromosomes in placental mammals. Chromosoma 15: 14–30.PubMedCrossRefGoogle Scholar
  39. Petit D, Couturier J, Viegas-Pequignot E, Lombard M, Dutrillaux B (1984) [Great degree ofh omology between the ancestral karyotype of squirrels (rodents) and that of primates and carnivores]. Ann Genet 27: 201–212.PubMedGoogle Scholar
  40. Raudsepp T, Fronicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4: 218–225.PubMedCrossRefGoogle Scholar
  41. Rettenberger G, Klett C, Zechner U et al. (1995) Visualization oft he conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26: 372–378.PubMedCrossRefGoogle Scholar
  42. Richard F, Dutrillaux B (1998) Origin ofh uman chromosome 21 and its consequences: a 50-million-year-old story. Chromosome Res 6: 263–268.PubMedCrossRefGoogle Scholar
  43. Richard F, Lombard M, Dutrillaux B (1996) ZOO-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini) euchromatin. Genomics 36: 417–423.PubMedCrossRefGoogle Scholar
  44. Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin ofhu man chromosomes 7, 16, and 19 and their homologs in placental mammals. Genome Res 10: 644–651.PubMedCrossRefGoogle Scholar
  45. Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93: 291–296.PubMedCrossRefGoogle Scholar
  46. Romagnano A, Richer CL (1985) High resolution R-bands produced in equine chromosomes after incorporation of bromodeoxyuridine. J Hered 76: 377–378.PubMedGoogle Scholar
  47. Ronne M, Iannuzzi L, Di Meo GP, Perucatti A, Ferrara L (1995) Localization of landmarks and bands in the karotype of Sus scrofa domestica. Comparison between different classifications. Hereditas 123: 155–168.PubMedCrossRefGoogle Scholar
  48. Roubin M, de Grouchy J, Klein LM(1973) [The felidae: chromosomal evolution]. Ann Genet 16: 233–245.PubMedGoogle Scholar
  49. Rumpler Y, Dutrillaux B (1976) Chromosomal evolution in Malagasy lemurs. I. Chromosome banding studies in the genuses Lemur and Microcebus. Cytogenet Cell Genet 17: 268–281.PubMedGoogle Scholar
  50. Rumpler Y, Dutrillaux B (1990) Cell Biology Reviews. Chromosomal Evolution and Speciation in Primates. Leioa-Vizcaya: Springer International, pp 1–116.Google Scholar
  51. Toder R, von Holst D, Schempp W (1992) Comparative cytogenetic studies in tree shrews (Tupaia). Cytogenet Cell Genet 60: 55–59.PubMedCrossRefGoogle Scholar
  52. Trask BJ, Massa H, Brand-Arpon V et al. (1998) Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Hum Mol Genet 7: 2007–2020.PubMedCrossRefGoogle Scholar
  53. Viale A, Ortola C, Richard F et al. (1998) Emergence ofa brain-expressed variant melanin-concentrating hormone gene during higher primate evolution: a gene 'in search of a function'. Mol Biol Evol 15: 196–214.PubMedGoogle Scholar
  54. Volleth M, Klett C, Kollak A et al. (1999) ZOO-FISH analysis in a species oft he order Chiroptera: Glossophaga soricina (Phyllostomidae). Chromosome Res 7: 57–64.PubMedCrossRefGoogle Scholar
  55. Volobouev VT (1989) Phylogenetic relationships oft he Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis. J Hered 80: 284–290.Google Scholar
  56. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265–270.PubMedCrossRefGoogle Scholar
  57. Wienberg J, Stanyon R, Nash WG et al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet 77: 211–217.PubMedGoogle Scholar
  58. Yang F, Muller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401.PubMedCrossRefGoogle Scholar
  59. Yang F, Alkalaeva EZ, Perelman PL et al. (2003) Reciprocal chromosome painting among human, aardvark and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100: 1062–1066PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • F. Richard
    • 1
    • 2
  • M. Lombard
    • 1
  • B. Dutrillaux
    • 1
    • 3
  1. 1.UMR 147 CNRS, Institut Curie, Section RechercheParis Cedex 05France
  2. 2.Université de Versailles-Saint-QuentinVersaillesFrance
  3. 3.Département de Radiobiologie, CEA-DSVFontenay-aux-Roses(France)

Personalised recommendations