Photosynthesis Research

, Volume 76, Issue 1–3, pp 193–205 | Cite as

Phycobiliproteins and phycobilisomes: the early observations

  • Nicole Tandeau de Marsac
Article

Abstract

The purpose of this minireview is to highlight the early observations that led to the discovery of the physico-chemical properties of the phycobiliproteins, their structure and function, and to their architectural organization in supramolecular complexes, the phycobilisomes. Generally attached on the stromal surface of the thylakoid membranes in both prokaryotic (cyanobacteria) and eukaryotic cells (cyanelles, red algae and cryptomonads), these complexes represent the most abundant soluble proteins and the major light-harvesting antennae for photosynthesis. This review mainly focuses on the years prior to the development of the molecular biology of cyanobacteria that flourished in the 1980s. We refer the reader to the comprehensive and excellent review by Sidler (1994) for more recent discoveries and more detailed literature on this topic. [-6pt]

‘It would be difficult to find another series of colouring matters of greater beauty or with such remarkable and instructive chemical and physical peculiarities.’ —H. Sorby, 1877.

allophycocyanin Lawrence Bogorad K. Boresch Donald Bryant Germaine Cohen-Bazire Theodor Engelmann Nees Esenbeck Yoshihiko Fujita N. Gaidukov Elisabeth Gantt Alexander Glazer Akihito Hattori Harald Kylin light-harvesting antennae Jack Myers Padraig O'Carra Colm O'hEocha photosynthesis phycocyanin phycoerythrin Wolfhart Rüdiger Hugo Scheer H. Sorby Nicole Tandeau de Marsac Herbert Zuber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airth RL and Blinks LR (1956) A new phycoerythrin from Porphyra naiadum. Biol Bull III: 321–327Google Scholar
  2. Arnold W and Oppenheimer JR (1950) International conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33: 423–435PubMedCrossRefGoogle Scholar
  3. Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10:3625–3634PubMedCrossRefGoogle Scholar
  4. Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435PubMedCrossRefGoogle Scholar
  5. Berns DS and Edwards MR (1965) Electron micrographic investigations of C-phycocyanin. Arch Biochem Biophys 110: 511–516PubMedCrossRefGoogle Scholar
  6. Blinks LR (1954) The photosynthetic function of pigments other than chlorophyll. Annu Rev Plant Physiol 5:93–114CrossRefGoogle Scholar
  7. Boresch K (1919) Ñber die Einwirkung farbigen Lichtes auf die Färbung von Cyanophyceen. Ber Deutsch Bot Ges 37:25–39Google Scholar
  8. Boresch K (1921) Die komplementäre chromatische adaptation. Arch Protistenk 44: 1–70Google Scholar
  9. Brody M and Emerson R (1959) The quantum yield of photosynthesis in Porphridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae. J Gen Microbiol 43: 251–264Google Scholar
  10. Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950-1960. Photosynth Res 73: 127–132CrossRefPubMedGoogle Scholar
  11. Bryant DA (1977) Comparative studies on cyanobacterial and rhodophytan biliproteins. PhD dissertation, University of California, Los AngelesGoogle Scholar
  12. Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127CrossRefGoogle Scholar
  13. Cho F and Govindjee (1970) Low temperature (4–77K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151–161PubMedCrossRefGoogle Scholar
  14. Cohen-Bazire G, Béguin S, Rimon S, Glazer AN and Brown DM (1977) Physico-chemical and immunological properties of allophycocyanins. Arch Microbiol 111: 225–238PubMedCrossRefGoogle Scholar
  15. Craig IW and Carr NG (1968) C-phycocyanin and allophycocyanin in two species of blue-green algae. Biochem J 106: 361–366PubMedGoogle Scholar
  16. Cramer C (1862) Das Rhodospermin, ein krystalloidischer, quellbarer Körper, im Zellinhalt verschiedener Florideen. Vierteljahrsschr Naturforsch Ges Zurich 7: 350–365Google Scholar
  17. Dale RE and Teale FWJ (1970) Number and distribution of chromophore types in native phycobiliproteins. Photochem Photobiol 12: 99–117PubMedGoogle Scholar
  18. Diakoff S and Scheibe J (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385PubMedGoogle Scholar
  19. Dobler M, Dover SD, Laves K, Binder A and Zuber H (1972) Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol 71: 785–787PubMedGoogle Scholar
  20. Duysens LNM (1951) Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168: 548–550PubMedGoogle Scholar
  21. Duysens LNM (1952) Transfer of energy in photosynthesis. Doctoral thesis, State University Utrecht, The NetherlandsGoogle Scholar
  22. Eiserling FA and Glazer AN (1974) Blue-green algal proteins: assembly forms of C-phycocyanin from Synechococcus sp. J Ultrastruct Res 47: 16–25PubMedCrossRefGoogle Scholar
  23. Emerson R and Lewis CM (1942) The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis. J Gen Physiol 25: 579–595CrossRefPubMedGoogle Scholar
  24. Engelmann TW(1881) Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen. Bot Z 39: 441–448Google Scholar
  25. Engelmann TW (1882) Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot Z 40: 419–425Google Scholar
  26. Engelmann TW (1883) Farbe und Assimilation. I. Assimilation findet nur in den farbstoffhaltigen Plasmatheilchen statt. II. Näherer Zusammenhang zwischen Lichtabsorption und Assimilation. III. Weitere Folgerungen. Bot Z 41: 1–29Google Scholar
  27. Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. I. Das Mikrospectraphotometer, ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorptiongrösse. III. Bestimmung der Vertheilung der Energie im Spectrum von Sonnenlicht mittels Bacterien-Methode und quantitativen Mikrospectralanalyse. Bot Z 42: 81–105Google Scholar
  28. Engelmann TW (1902) Ueber experimentelle erzeugung zweckmässiger aenderungen der färbung pflanzlicher chromophylle durch farbiges licht. Arch Anat Physiol (Physiol Abt): 333–335Google Scholar
  29. Esenbeck N (1836) Ueber einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet. Liebigs Ann Chem XVII: 75–82Google Scholar
  30. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 2: 55–75Google Scholar
  31. Frank G, Sidler W, Widmer H and Zuber H (1978) The complete amino acid sequence of both subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus. Hoppe Seyler's Z Physiol Chem 359: 1491–1507PubMedGoogle Scholar
  32. French CS and Young VK (1952) The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J Gen Physiol 35: 873–890PubMedCrossRefGoogle Scholar
  33. Fujita Y and Hattori A (1960) Effect of chromatic lights on phycobilin formation in a blue-green alga Tolypothrix Tenuis. Plant Cell Physiol 1: 293–303Google Scholar
  34. Fujita Y and Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3: 209–220Google Scholar
  35. Fujita Y and Hattori A (1963) Effects of second chromatic illumination on phycobilin chromoprotein formation in chromatically preilluminated cells of Tolypothrix tenuis. Plant Cell Physiol (special issue on Microalgae & Photosynthetic Bacteria): 431–440Google Scholar
  36. Gaidukov N (1902). Ñber den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Abh Preuss Akad Wiss V: 8–13Google Scholar
  37. Gaidukov N (1903a) Die Farbenveränderung bei den Prozessen der komplementären chromatischen Adaptation. Ber Deutsch Bot Ges 21: 517–522Google Scholar
  38. Gaidukov N (1903b) Weitere Untersuchungen Ñber den Einfluss farbigen Lichtes auf die Färbung der Oscillarien. Ber Deutsch Bot Ges 21: 484–492Google Scholar
  39. Gaidukov N (1923) Zur Frage nach der komplementären chromatischen Adaptation. Ber Deutsch Bot Ges 41: 356–361Google Scholar
  40. Gantt E (1980) Structure and function of phycobilisomes: lightharvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80CrossRefGoogle Scholar
  41. Gantt E and Conti SF (1965) The ultrastructure of Porphyridium cruentum. J Cell Biol 26: 365–381PubMedCrossRefGoogle Scholar
  42. Gantt E and Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29: 423–434PubMedCrossRefGoogle Scholar
  43. Gantt E and Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405PubMedGoogle Scholar
  44. Gantt E and Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54: 313–324PubMedCrossRefGoogle Scholar
  45. Gantt E and Lipschultz CA (1973) Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta 292: 858–861PubMedCrossRefGoogle Scholar
  46. Gantt E and Lipschultz CA (1974) Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13: 2960–2966PubMedCrossRefGoogle Scholar
  47. Ghosh AK and Govindjee (1966) Transfer of excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J 6: 611–619PubMedGoogle Scholar
  48. Glazer AN (1976) Phycocyanins: Structure and Function. In: Smith KC (ed) Photochemical and Photobiological Reviews, Vol 1, pp 71–115. Plenum Publishing, New YorkGoogle Scholar
  49. Glazer AN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51Google Scholar
  50. Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264: 1–4PubMedGoogle Scholar
  51. Glazer AN and Cohen-Bazire G (1971) Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad, Sci USA 68: 1398–1401CrossRefGoogle Scholar
  52. Glazer AN and Fang S (1973a) Chromophore content of blue-green algal phycobiliproteins. J Biol Chem 248: 659–662PubMedGoogle Scholar
  53. Glazer AN and Fang S (1973b) Formation of hybrid proteins from the α and β subunits of phycocyanins of unicellular and filamentous blue-green algae. J Biol Chem 248: 663–671PubMedGoogle Scholar
  54. Glazer AN and Hixson CS (1977) Subunit structure and chromophore composition of Rhodophytan phycoerythrins. Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252: 32–42PubMedGoogle Scholar
  55. Glazer AN, Fang S and Brown DM (1973) Spectroscopic properties of C-phycocyanin and of its α and β subunits. J Biol Chem 16: 5679–5685Google Scholar
  56. Grossman A (2003) A molecular understanding of complementary chromatic adaptation. Photosynth Res 76: 207–215 (this issue)CrossRefPubMedGoogle Scholar
  57. Guglielmi G, Cohen-Bazire G and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189CrossRefGoogle Scholar
  58. Gysi J and Zuber H (1974) Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett 48: 209–213PubMedCrossRefGoogle Scholar
  59. Halldal P (1970) The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Halldal P (ed) Photobiology of Microorganisms, Chap 2, pp 17–55. Wiley, LondonGoogle Scholar
  60. Hanson EK (1909) Observations on phycoerythrin, the red pigment of deep-water algae. New Phytol 8: 337–344CrossRefGoogle Scholar
  61. Harder R (1923) Ñber die Bedeutung von Lichtintensität und Wellenlänge für die Assimilation farbiger Algen. Z Bot XV: 305–355Google Scholar
  62. Hattori A and Fujita Y (1959a) Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by illumination with colored lights. J Biochem 46: 521–524Google Scholar
  63. Hattori A and Fujita Y (1959b) Spectroscopic studies on the phycobilin pigments obtained from blue-green and red algae. J Biochem 46: 903–909Google Scholar
  64. Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835–839PubMedCrossRefGoogle Scholar
  65. Haxo FT and Blinks LR (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389–422PubMedCrossRefGoogle Scholar
  66. Herdman M, Coursin T, Rippka R, Houmard J and Tandeau de Marsac N (2000) A new appraisal of the prokaryotic origin of eukaryotic phytochromes. J Mol Evol 51: 205–213PubMedGoogle Scholar
  67. Jones LW and Myers J (1965) Pigment variations in Anacystis nidulans induced by light of selected wavelengths. J Phycol 1: 6–13Google Scholar
  68. Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412PubMedGoogle Scholar
  69. Kessel M, MacColl R, Berns DS and Edwards MR (1973) Electron microscope and physical chemical characterization of Cphycocyanin from fresh extracts of two blue-green algae. Can J Microbiol 19: 831–836PubMedGoogle Scholar
  70. Kitasato Z (1925) Biochemische Studien über Phycoerythrin und Phycocyan. Acta Phytochem 2: 75–97Google Scholar
  71. Kützing FT (1843) Phycologia generalis, oder Anatomie, Physiologie und Systemkunde der Tange. FA Brockhaus, LeipzigGoogle Scholar
  72. Kylin H (1910) Ñber Phykoerythrin und Phykocyan bei Ceramium rubrum (Huds.) Ag. Hoppe-Seyler's Z Physiol Chem LXIX: 169–239Google Scholar
  73. Kylin H (1912) Ñber die roten und blauen Farbstoffe der Algen. Hoppe-Seyler's Z Physiol Chem LXXVI: 396–425Google Scholar
  74. Lemasson C, Tandeau de Marsac N and Cohen-Bazire G (1973) Role of allophycocyanin as a light-harvesting pigment in cyanobacteria. Proc Natl Acad Sci USA 70: 3130–3133CrossRefPubMedGoogle Scholar
  75. Lemberg R (1928) Die chromoproteide der rotalgen. I. Liebigs Ann Chem 461: 46–89Google Scholar
  76. Lemberg R (1930) Chromoproteide der Rotalgen. II. Spaltung mit pepsin un säuren. Isolierung eines pyrrolfarbstoffs. Liebigs Ann Chem 477: 195–245Google Scholar
  77. Lemberg R and Bader G (1933) Die phycobiline der rot-algen. Ñberführung in mesobilirubin und dehydro - mesobilirubin. Liebigs Ann Chem 505: 151–177Google Scholar
  78. Lundell DJ, Yamanaka G and Glazer AN (1981) A terminal energy acceptor of the phycobilisome: the 75 000–dalton polypeptide of Synechococcus 6301 phycobilisomes - a new biliprotein. J Cell Biol 91: 315–319PubMedCrossRefGoogle Scholar
  79. MacColl R, Lee JJ and Berns DS (1971) Protein aggregation in C-phycocyanin - studies at very low concentration with the photoelectric scanner of the ultracentrifuge. Biochem J 122: 421–426PubMedGoogle Scholar
  80. Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 133–138CrossRefPubMedGoogle Scholar
  81. Mölisch H (1894) Das phycoerythrin, seine Krystallisirbarkeit und chemische Natur Bot Z 52: 177–189Google Scholar
  82. Mölisch H (1895) Das Phycocyan, ein krystallisirbarer Eiweisskörper. Bot Z 53: 131–135Google Scholar
  83. Myers A, Preston RD and Ripley GW (1956) Fine structure in the red algae - I. X-ray and electronmicroscope investigation of Griffithsia flosculosa. Proc R Soc London Ser B 144: 450–459CrossRefGoogle Scholar
  84. Myers J and Kratz WA (1955) Relations between pigment content and photosynthetic characteristics in a blue-green algea. J Gen Microbiol 39: 11–22Google Scholar
  85. Neufeld GJ and Riggs AF (1969) Aggregation properties of Cphycocyanin from Anacystis nidulans. Biochem Biophys Acta 181: 234–243PubMedGoogle Scholar
  86. O'Carra P (1970) Algal biliproteins. Biochem J 119: 2–3Google Scholar
  87. O'Carra P and Killilea SD (1971) Subunit structures of Cphycocyanin and C-phycoerythrin. Biochem Biophys Res Commun 45: 1192–1197PubMedCrossRefGoogle Scholar
  88. O'hEocha C (1958) Comparative biochemical studies of the phycobilins. Arch Biochem Biophys 73: 207–219PubMedCrossRefGoogle Scholar
  89. O'hEocha C (1962) Phycobilins. In: Lewin RA (ed) Physiology and Biochemistry of Algae, Chap 2, pp 421–425. Academic Press, New YorkGoogle Scholar
  90. O'hEocha C (1965) Biliproteins of algae. Annu Rev Plant Physiol 16: 415–434CrossRefGoogle Scholar
  91. Oltmanns F (1892) Ueber die Culturund Lebensbedingungen der Meeresalgen. Jahrb wiss Botany 23: 349–440Google Scholar
  92. Ramus J, Beale SI, Mauzzerall D and Howard KL (1976a) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Marine Biol 37: 223–229CrossRefGoogle Scholar
  93. Ramus J, Beale SI and Mauzzerall D (1976b) Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of water depth. Marine Biol 37: 231–238CrossRefGoogle Scholar
  94. Rippka R, Waterbury J and Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436CrossRefGoogle Scholar
  95. Rüdiger W (1970) Recent chemistry and biochemistry of bile pigments. Angew Chem Int Ed 9: 473–480CrossRefGoogle Scholar
  96. Rüdiger W(1975) Phycobiliproteide. Ber Deutsch Bot Ges 88: 125–139Google Scholar
  97. Scheer H (1981) Biliproteins. Angew Chem Int Ed Engl 20: 241–261CrossRefGoogle Scholar
  98. Schütt F (1888) Weitere Beiträge zur Kenntniss des Phycoerythrins. Ber Deutsch Bot Ges VI: 305–323Google Scholar
  99. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Chap 7, pp 139–216. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  100. Siegelman HW, Chapman DJ and Cole WJ (1968) The bile pigments of plants. In: Goodwin TW (ed) Biochemical Society Symposia, Vol 28, pp 107–120. Academic Press, New YorkGoogle Scholar
  101. Sorby HC (1877) On the characteristic colouring-matters of the red groups of algae. J Linnean Soc Bot XV: 34–40Google Scholar
  102. Stokes GG (1854) Ñber die Metallreflexion an gewissen nichtmetallischen Substanzen. Ann Phys Chem (Poggendorff JC) 4: 300–313Google Scholar
  103. Svedberg T and Eriksson IB (1932) The molecular weights of phycocyan and of phycoerythrin. III. J Am Chem Soc 54: 3998–4010CrossRefGoogle Scholar
  104. Svedberg T and Katsurai T (1929) The molecular weights of phycocyan and of phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos aquae. J Am Chem Soc 51: 3573–3583CrossRefGoogle Scholar
  105. Svedberg T and Lewis NB (1928) The molecular weights of phycoerythrin and of phycocyan. J Am Chem Soc 50: 525–536CrossRefGoogle Scholar
  106. Tandeau de Marsac N and Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639PubMedCrossRefGoogle Scholar
  107. Tandeau de Marsac N, Castets AM and Cohen-Bazire G (1980) Wavelength modulation of phycoerythrin synthesis in Synechocystis sp. 6701. J Bacteriol 142: 310–314PubMedGoogle Scholar
  108. Teale FWJ and Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116: 161–169PubMedGoogle Scholar
  109. Vogelmann TC and Scheibe J (1978) Action spectra for chromatic adaptation in the blue-green algae Fremyella diplosiphon. Planta 143: 233–239CrossRefGoogle Scholar
  110. Volk SL and Bishop NI (1968) Photosynthetic efficiency of a phycocyanin-less mutant of Cyanidium. Photochem Photobiol 8: 213–221Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Nicole Tandeau de Marsac
    • 1
  1. 1.Département de Microbiologie Fondamentale et MédicaleUnité des Cyanobactéries, URA CNRS 2172Paris Cedex 15France

Personalised recommendations