Natural Computing

, Volume 2, Issue 2, pp 173–197

Modelling biological processes by using a probabilistic P system software

  • Ioan I. Ardelean
  • Matteo Cavaliere
Article

Abstract

In this paper we present a probabilistic P system simulator that implements the evolution-communication model proposed in (Cavaliere, 2003) enriched with some probabilistic parameters inspired by the cell biology.After describing the software and its working, we compare the mathematical model used with the biological reality of the cell. Then, we present some mathematical and biological applications showing how one can use this software to simulate simple but interesting biological phenomena, related to respiration and photosynthesis processes in some bacteria.

bacteria membrane computing photosynthesis probability respiration software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B (1998) Essential Cell Biology. An Introduction to the Molecular Biology of the Cell. Garland Publ Inc, New York, LondonGoogle Scholar
  2. Alexeeva S, Hellingwerf KJ and Teixeira de Mattos MJ (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. Journal of Bacteriology 184: 1402–1406Google Scholar
  3. Alexeeva S, de Kort B, Sawers G, Hellingwerf KJ and Teixeira de Mattos MJ (2000) Effects of limited aeration and of the ArcAB System on intermediary pyruvate catabolism in Escherichia coli. Journal of Bacteriology 182: 4934–4940Google Scholar
  4. Ardelean I, Tunaru S, Flonta ML, Teodosiu G, Madalin E, Dumitru L and Zarnea G (1999) Increased respiratory activity in light in salt stressed Synechocystis. In: Peschek GA, Loffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp. 403–409. Plenum Publisher, New YorkGoogle Scholar
  5. Ardelean I (2003) Molecular biology of bacteria and its relevance for P systems. In: Păun Gh, Rozenberg G, Salomaa A and Zandron C (eds) Membrane Computing 2002, pp. 1–18. Lecture Notes in Computer Science 2597, Springer-Verlag, BerlinGoogle Scholar
  6. Booth IR (1988) Bacterial Energy Transduction. Academic Press, LondonGoogle Scholar
  7. Cavaliere M(2003) Evolution-communication P systems. In: Păun Gh, Rozenberg G, Salomaa A and Zandron C (eds) Membrane Computing 2002, pp. 134–145. Lecture Notes in Computer Science 2597, Springer-Verlag, BerlinGoogle Scholar
  8. Hall DO and Rao KK (1994) Photosynthesis. Cambridge University PressGoogle Scholar
  9. Jung H (2001) Towards the molecular mechanism of Na/solute symport in Prokaryotes. Biochem Biophys Acta 1505: 131–143Google Scholar
  10. Mayer E (1998) This is Biology – The Science of the Living World. The Belknap Press of the Harward University Press, Cambridge, MassachusettsGoogle Scholar
  11. Miller SL and Orgel LE (1973) The Origin of Life on Earth. Englewood Clifs, Prentice HallGoogle Scholar
  12. Nicholls DG and Ferguson SJ (2002) Bioenergetics. Academic Press, LondonGoogle Scholar
  13. Padan E, Venturi M, Gercham Y and Dover N (2001) Na/H antiporters. Biochemica Biophysica Acta 1505: 144–157Google Scholar
  14. Păun Gh (2000) Computing with membranes. Journal of Computer and System Sciences 61(1): 108–143Google Scholar
  15. Păun Gh (2002) Membrane Computing. An Introduction. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  16. Pelmont J (1995) Catalyseurs du monde vivant. Press Universitaires de Grenoble, GrenobleGoogle Scholar
  17. Peschek GA (1987) Respiratory electron transport. In: Fay P and Van Baalen C (eds) The Cyanobacteria, pp. 119–161. Elsevier Science Publishers, AmsterdamGoogle Scholar
  18. Peschek GA, Obinger C, Fromwald S and Bergman B (1994) Correlation between immunogold based and activities of the cytochrome-c oxidase (aa 3type) in membranes of salt stressed cyanobacteria. FEMS – Microbiology Letters 124: 431–438Google Scholar
  19. Peschek GA and Zoder R (2001) Temperature stress and basic bioenergetic strategies for stress defence. In: Rai LC and Gaur JP (eds) Algal Adaptation to Environmental Stress, pp. 203–258. Springer-Verlag, BerlinGoogle Scholar
  20. Puustinen A, Finel M, Haltia T, Gennis RB and Wikstrom M (1991) Properties of the two terminal oxidades of Escherichia coli. Biochemistry 30: 3936–3942Google Scholar
  21. Saier MH (1999) Genome archaeology leading to the characterization and classification of transport proteins. Current Opinion Microbiology 2: 555–561Google Scholar
  22. Singer SJ and Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ioan I. Ardelean
    • 1
  • Matteo Cavaliere
    • 2
  1. 1.Centre of Microbiology, Institute of Biology of the Romanian AcademyBucharestRomania (E-mail
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain (E-mail

Personalised recommendations