Chromosome Research

, Volume 11, Issue 5, pp 527–536

Nuclear microenvironments support physiological control of gene expression

  • Gary S. Stein
  • Jane B. Lian
  • Martin Montecino
  • Janet L. Stein
  • André J. van Wijnen
  • Amjad Javed
  • Jitesh Pratap
  • Je Choi
  • S. Kaleem Zaidi
  • Soraya Gutierrez
  • Kimberly Harrington
  • Jiali Shen
  • Daniel Young
  • Shirwin Pockwinse
Article

Abstract

There is growing recognition that the organization of nucleic acids and regulatory proteins is functionally linked to the assembly, localization and activity of gene regulatory machinery. Cellular, molecular, biochemical and in-vivo genetic evidence support an obligatory relationship between nuclear microenvironments where regulatory complexes reside and fidelity of transcriptional control. Perturbations in mechanisms governing the intranuclear trafficking of transcription factors and the temporal/spatial organization of regulatory proteins within the nucleus occur with compromised gene expression that abrogates skeletal development and mediates leukemogenesis.

cell nucleus chromatin gene expression nucleosome osteocalcin RUNX proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103: 667-678.CrossRefPubMedGoogle Scholar
  2. Bae SC, Yamaguchi-Iwai Y, Ogawa E et al. (1993) Isolation of PEBP2aB cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene 8: 809-814.PubMedGoogle Scholar
  3. Banerjee C, Hiebert SW, Stein JL, Lian JB, Stein GS (1996) An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci USA 93: 4968-4973.CrossRefPubMedGoogle Scholar
  4. Banerjee C, McCabe LR, Choi J-Y et al. (1997) Runt homology domain proteins in osteoblast differentiation: AML-3/ CBFA1 is a major component of a bone specific complex. J Cell Biochem 66:1-8.CrossRefPubMedGoogle Scholar
  5. Barseguian K, Lutterbach B, Hiebert SW et al. (2002) Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proc Natl Acad Sci USA 99: 15434-15439.CrossRefPubMedGoogle Scholar
  6. Bartsch J, Truss M, Bode J, Beato M (1996) Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels it nucleosome structure. Proc Natl Acad Sci USA 93: 10741-10746.CrossRefPubMedGoogle Scholar
  7. Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71: 247-273.CrossRefPubMedGoogle Scholar
  8. Berezney R, Mortillaro M, Ma H et al. (1996) Connecting nuclear architecture and genomic function. J Cell Biochem 62: 223-226.CrossRefPubMedGoogle Scholar
  9. Blanco JCG, Wang I-M, Tsai SY et al. (1995) Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 92: 1535-1539.CrossRefPubMedGoogle Scholar
  10. Bortell R, Owen TA, Bidwell JP et al. (1992) Vitamin D-responsive protein-DNA interactions at multiple promoter regulatory elements that contribute to the level of rat osteocalcin gene expression. Proc Natl Acad Sci USA 89: 6119-6123.CrossRefPubMedGoogle Scholar
  11. Breen EC, van Wijnen AJ, Lian JB, Stein GS, Stein JL (1994) In vivo occupancy of the vitamin D responsive element in the osteocalcin gene supports vitamin D-dependent transcriptional upregulation in intact cells. Proc Natl Acad Sci USA 91: 12902-12906.CrossRefPubMedGoogle Scholar
  12. Brownell JE, Zhou J, Ranalli T et al. (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843-851.CrossRefPubMedGoogle Scholar
  13. Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD (1994) A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci USA 91: 1950-1954.CrossRefPubMedGoogle Scholar
  14. Cairns BR, Lorch Y, Li Y et al. (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87: 1249-1260.CrossRefPubMedGoogle Scholar
  15. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905-915.CrossRefPubMedGoogle Scholar
  16. Choi J-Y, Pratap J, Javed A et al. (2001) Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc Natl Acad Sci USA 98: 8650-8655.CrossRefPubMedGoogle Scholar
  17. Ciejek EM, Tsai MJ, O'Malley BW (1983) Actively transcribed genes are associated with the nuclear matrix. Nature 306: 607-609.CrossRefPubMedGoogle Scholar
  18. Cook PR (1999) The organization of replication and transcription. Science 284: 1790-1795.CrossRefPubMedGoogle Scholar
  19. Cote J, Peterson CL, Workman JL (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci USA 95: 4947-4952.CrossRefPubMedGoogle Scholar
  20. Côté J, Quinn J, Workman JL, Peterson CL (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265: 53-60.PubMedGoogle Scholar
  21. Davie JR (1998) Covalent modifications of histones: expression from chromatin templates. Curr Opin Genet Dev 8: 173-178.CrossRefPubMedGoogle Scholar
  22. de la Serna I, Carlson KA, Imbalzano AN (2001) Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27: 187-190.CrossRefPubMedGoogle Scholar
  23. DeFranco DB (2002) Navigating steroid hormone receptors through the nuclear compartment. Mol Endocrinol 16: 1449-1455.CrossRefPubMedGoogle Scholar
  24. Demay MB, Gerardi JM, DeLuca HF, Kronenberg HM (1990) DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsive to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 87: 369-373.CrossRefPubMedGoogle Scholar
  25. Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15: 1858-1869.PubMedGoogle Scholar
  26. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747-754.CrossRefPubMedGoogle Scholar
  27. Dyck JA, Maul GG, Miller WH, Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333-343.CrossRefPubMedGoogle Scholar
  28. Feng XH, Zhang Y, Wu RY, Derynck R (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12: 2153-2163.PubMedGoogle Scholar
  29. Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296: 1412-1416.CrossRefPubMedGoogle Scholar
  30. Grant PA, Schieltz D, Pray-Grant MG et al. (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation [see comments]. Cell 94: 45-53.CrossRefPubMedGoogle Scholar
  31. Guo B, Odgren PR, van Wijnen AJ et al. (1995) The nuclear matrix protein NMP-1 is the transcription factor YY1. Proc Natl Acad Sci USA 92: 10526-10530.CrossRefPubMedGoogle Scholar
  32. Guo B, Aslam F, van Wijnen AJ et al. (1997) YY1 regulates VDR/RXR mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci USA 94: 121-126.CrossRefPubMedGoogle Scholar
  33. Gutierrez J, Sierra J, Medina R et al. (2000) Interaction of CBFa/AML/PEBP2a transcription factors with nucleosomal sequences requires flexibility in the translational positioning of the histone octamer and exposure of the Cbfa site. Biochemistry 39: 13565-13574.CrossRefPubMedGoogle Scholar
  34. Gutierrez S, Javed A, Tennant D et al. (2002) CCAAT/enhancer-binding proteins (C/EBP) b and d Activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. J Biol Chem 277: 1316-1323.CrossRefPubMedGoogle Scholar
  35. Harrington KS, Javed A, Drissi H et al. (2002). Transcription factors RUNX1/AML1 and RUNX2/Cbfa1 dynamically associate with stationary subnuclear domains. J Cell Sci 115: 4167-4176.CrossRefPubMedGoogle Scholar
  36. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183: 46-51.PubMedGoogle Scholar
  37. Hassan AH, Neely KE, Workman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104: 817-827.CrossRefPubMedGoogle Scholar
  38. Hoffmann HM, Catron KM, van Wijnen AJ et al. (1994) Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins. Proc Natl Acad Sci USA 91: 12887-12891.CrossRefPubMedGoogle Scholar
  39. Horlein AJ, Naar AM, Heinzel T et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397-404.CrossRefPubMedGoogle Scholar
  40. Htun H, Barsony J, Renyi I, Gould DL, Hager GL (1996) Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc Natl Acad Sci USA 93: 4845-4850.CrossRefPubMedGoogle Scholar
  41. Imbalzano AN (1998) Energy-dependent chromatin remodelers: complex complexes and their components. Crit Rev Eukaryot Gene Expr 8: 225-255.PubMedGoogle Scholar
  42. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90: 145-155.CrossRefPubMedGoogle Scholar
  43. Javed A, Gutierrez S, Montecino M et al. (1999) Multiple Cbfa/AML sites in the rat osteocalcin promoter are required for basal and vitamin D responsive transcription and contribute to chromatin organization. Mol Cell Biol 19: 7491-7500.PubMedGoogle Scholar
  44. Javed A, Guo B, Hiebert S et al. (2000) Groucho/TLE/R-Esp proteins associate with the nuclear matrix and repress RUNX (CBFa/AML/PEBP2a) dependent activation of tissue-specific gene transcription. J Cell Sci 113: 2221-2231.PubMedGoogle Scholar
  45. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080.CrossRefPubMedGoogle Scholar
  46. Kimura H, Tao Y, Roeder RG, Cook PR (1999) Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 19: 5383-5392.PubMedGoogle Scholar
  47. Komori T, Yagi H, Nomura S et al. (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764.CrossRefPubMedGoogle Scholar
  48. Kornberg RD, Lorch Y (1999) Chromatin-modifying and-remodeling complexes. Curr Opin Genet Dev 9: 148-151.CrossRefPubMedGoogle Scholar
  49. Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370: 477-481.CrossRefPubMedGoogle Scholar
  50. Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280: 547-553.CrossRefPubMedGoogle Scholar
  51. Leonhardt H, Rahn HP, Cardoso MC (1998) Intranuclear targeting of DNA replication factors. J Cell Biochem Suppl 30-31: 243-249.CrossRefPubMedGoogle Scholar
  52. Levanon D, Goldstein RE, Bernstein Y et al. (1998) Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95: 11590-11595.CrossRefPubMedGoogle Scholar
  53. Lo WS, Trievel RC, Rojas JR et al. (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5: 917-926.CrossRefPubMedGoogle Scholar
  54. Lorch Y, Cairns BR, Zhang M, Kornberg RD (1998) Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94: 29-34.CrossRefPubMedGoogle Scholar
  55. Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 146: 531-542.CrossRefPubMedGoogle Scholar
  56. MacDonald PN, Sherman DR, Dowd DR, Jefcoat SCJr, DeLisle K (1995) The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 270: 4748-4752.CrossRefPubMedGoogle Scholar
  57. Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65: 775-783.CrossRefPubMedGoogle Scholar
  58. Mao S, Frank RC, Zhang J, Miyazaki Y, Nimer SD (1999) Functional and physical interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 19: 3635-3644.PubMedGoogle Scholar
  59. Markose ER, Stein JL, Stein GS, Lian JB (1990) Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene. Proc Natl Acad Sci USA 87: 1701-1705.CrossRefPubMedGoogle Scholar
  60. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265-306.CrossRefPubMedGoogle Scholar
  61. McNeil S, Guo B, Stein JL et al. (1998) Targeting of the YY1 transcription factor to the nucleolus and the nuclear matrix in situ: the C-terminus is a principal determinant for nuclear trafficking. J Cell Biochem 68: 500-510.CrossRefPubMedGoogle Scholar
  62. McNeil S, Zeng C, Harrington KS et al. (1999) The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFalpha2 transcription factor. Proc Natl Acad Sci USA 96: 14882-14887.CrossRefPubMedGoogle Scholar
  63. Merriman HL, van Wijnen AJ, Hiebert S et al. (1995) The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/CBF/PEBP2/runt domain transcription factor family: interactions with the osteocalcin gene promoter. Biochemistry 34: 13125-13132.CrossRefPubMedGoogle Scholar
  64. Misteli T (2000) Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 113: 1841-1849.PubMedGoogle Scholar
  65. Misteli T, Spector DL (1999) RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol Cell 3: 697-705.CrossRefPubMedGoogle Scholar
  66. Montecino M, Pockwinse S, Lian J, Stein G, Stein J (1994) DNase I hypersensitive sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene. Biochemistry 33: 348-353.CrossRefPubMedGoogle Scholar
  67. Montecino M, Lian J, Stein G, Stein J (1996) Changes in chromatin structure support constitutive and developmentally regulated transcription of the bone-specific osteocalcin gene in osteoblastic cells. Biochemistry 35: 5093-5102.CrossRefPubMedGoogle Scholar
  68. Montecino M, Frenkel B, van Wijnen AJ, Lian JB, Stein GS, Stein JL (1999) Chromatin hyperacetylation abrogates vitamin D-mediated transcriptional upregulation of the tissue-specific osteocalcin gene in vivo. Biochemistry 38: 1338-1345.CrossRefPubMedGoogle Scholar
  69. Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert SW, Friedman AD (1994) PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2b/CBFb proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558-5568.PubMedGoogle Scholar
  70. Otto F, Thornell AP, Crompton T et al. (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771.CrossRefPubMedGoogle Scholar
  71. Paredes R, Gutierrez J, Gutierrez S et al. (2002) Interaction of the 1alpha,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling. Biochem J 363: 667-676.CrossRefPubMedGoogle Scholar
  72. Penman S (1995) Rethinking cell structure. Proc Natl Acad Sci USA 92: 5251-5257.CrossRefPubMedGoogle Scholar
  73. Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187-192.CrossRefPubMedGoogle Scholar
  74. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13: 263-273.CrossRefPubMedGoogle Scholar
  75. Schnitzler G, Sif S, Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94: 17-27.CrossRefPubMedGoogle Scholar
  76. Shen J, Montecino MA, Lian JB, Stein GS, van Wijnen AJ, Stein JL (2002) Histone acetylation in vivo at the osteocalcin locus is functionally linked to vitamin D dependent, bone tissue-specific transcription. J Biol Chem 277: 20284-20292.CrossRefPubMedGoogle Scholar
  77. Siddique H, Zou JP, Rao VN, Reddy ES (1998) The BRCA2 is a histone acetyltransferase. Oncogene 16: 2283-2285.CrossRefPubMedGoogle Scholar
  78. Sierra J, Villagra A, Paredes R et al. (2003) Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyl transferase activity. Mol Cell Biol 23: 3339-3351.CrossRefPubMedGoogle Scholar
  79. Smith KP, Moen PT, Wydner KL, Coleman JR, Lawrence JB (1999) Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol 144: 617-629.CrossRefPubMedGoogle Scholar
  80. Stein GS, Montecino M, van Wijnen AJ, Stein JL, Lian JB (2000) Nuclear structure-gene expression interrelationships: implications for aberrant gene expression in cancer. Cancer Res 60: 2067-2076.PubMedGoogle Scholar
  81. Stenoien D, Sharp ZD, Smith CL, Mancini MA (1998) Functional subnuclear partitioning of transcription factors. J Cell Biochem 70: 213-221.CrossRefPubMedGoogle Scholar
  82. Tamura M, Noda M (1994) Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors. J Cell Biol 126: 773-782.CrossRefPubMedGoogle Scholar
  83. Tang L, Guo B, van Wijnen AJ et al. (1998) Preliminary crystallographic study of the glutathione S-transferase fused with the nuclear matrix targeting signal of the transcription factor AML-1/CBFa2. J Struct Biol 123: 83-85.CrossRefPubMedGoogle Scholar
  84. Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83: 1011-1020.CrossRefPubMedGoogle Scholar
  85. Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525-532.CrossRefPubMedGoogle Scholar
  86. Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13: 686-697.PubMedGoogle Scholar
  87. Ura K, Kurumizaka H, Dimitrov S, Almouzni G, Wolffe AP (1997) Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression. EMBO J 16: 2096-2107.CrossRefPubMedGoogle Scholar
  88. van Steensel B, Jenster G, Damm K, Brinkmann AO, van Driel R (1995) Domains of the human androgen receptor and glucocorticoid receptor involved in binding to the nuclear matrix. J Cell Biochem 57: 465-478.CrossRefPubMedGoogle Scholar
  89. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II [published erratum appears in Nature 1997 Oct 30; 389(6654):1003]. Nature 388: 598-602.CrossRefPubMedGoogle Scholar
  90. Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol 147: 13-24.CrossRefPubMedGoogle Scholar
  91. Vettese-Dadey M, Walter P, Chen H, Juan L-J, Workman JL (1994) Role of the histone amino termini in facilitated binding of a transcription factor. Mol Cell Biol 14: 970-981.PubMedGoogle Scholar
  92. Villagra A, Gutierrez J, Paredes R et al. (2002) Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem 85: 112-122.CrossRefPubMedGoogle Scholar
  93. Wang W, Cote J, Xue Y et al. (1996a) Purification and biochemical heterogeneity of the mammalian SWI/SNF complex. EMBO J 15: 5370-5382.PubMedGoogle Scholar
  94. Wang W, Xue Y, Zhou S, Kuo A, Cairns BR, Crabtree GR (1996b) Diversity and specialization of mammalian SWI/ SNF complexes. Genes Dev 10: 2117-2130.PubMedGoogle Scholar
  95. Wei X, Samarabandu J, Devdhar RS, Siegel AJ, Acharya R, Berezney R (1998) Segregation of transcription and replication sites into higher order domains. Science 281: 1502-1505.CrossRefPubMedGoogle Scholar
  96. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382: 319-324.CrossRefPubMedGoogle Scholar
  97. Young DW, Zaidi SK, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2002) The dynamic spatial distribution of a tissue specific transcription factor during mitosis. Abstract#2115. Mol Biol Cell Suppl 13: 375a.Google Scholar
  98. Zaidi SK, Javed A, Choi J-Y et al. (2001) A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J Cell Sci 114: 3093-3102.PubMedGoogle Scholar
  99. Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2002) Integration of Runx and Smad regulatory signals at transcriptionally active subnuclear sites. Proc Natl Acad Sci USA 99: 8048-8053.CrossRefPubMedGoogle Scholar
  100. Zaidi SK, Sullivan AJ, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2002) Functional integration of Runx2 and BMP2 responsive regulatory signals at transcriptionally active subnuclear sites in osseous and non-osseous cells. Abstract#M194. J Bone Mineral Res Suppl 1 17: S439.Google Scholar
  101. Zeng C, van Wijnen AJ, Stein JL et al. (1997) Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBF a transcription factors. Proc Natl Acad Sci USA 94: 6746-6751.CrossRefPubMedGoogle Scholar
  102. Zeng C, McNeil S, Pockwinse S et al. (1998) Intranuclear targeting of AML/CBFa regulatory factors to nuclear matrix-associated transcriptional domains. Proc Natl Acad Sci USA 95: 1585-1589.CrossRefPubMedGoogle Scholar
  103. Zhang DE, Hetherington CJ, Meyers S et al. (1996) CCAAT enhancer-binding protein (C/EBP) and AML1 (CBFa2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16: 1231-1240.PubMedGoogle Scholar
  104. Zhang Y, Sun ZW, Iratni R et al. (1998) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1: 1021-1031.CrossRefPubMedGoogle Scholar
  105. Zhang YW, Yasui N, Ito K et al. (2000) A RUNX2/ PEBP2aA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 97: 10549-10554.CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Gary S. Stein
    • 1
  • Jane B. Lian
    • 1
  • Martin Montecino
    • 2
  • Janet L. Stein
    • 1
  • André J. van Wijnen
    • 1
  • Amjad Javed
    • 1
  • Jitesh Pratap
    • 1
  • Je Choi
    • 3
  • S. Kaleem Zaidi
    • 1
  • Soraya Gutierrez
    • 2
  • Kimberly Harrington
    • 1
  • Jiali Shen
    • 1
  • Daniel Young
    • 1
  • Shirwin Pockwinse
    • 1
  1. 1.Department of Cell Biology and Cancer CenterUniversity of Massachusetts Medical SchoolWorcesterUSA
  2. 2.Departamento de Biologia Molecular, Facultad de Ciencias BiologicasUniversidad de ConcepcionConcepcionChile
  3. 3.Kyungpook National UniversityTaeguKorea

Personalised recommendations