Journal of Biomolecular NMR

, Volume 27, Issue 2, pp 133–142 | Cite as

Rotational diffusion tensor of nucleic acids from 13C NMR relaxation

  • Jerome Boisbouvier
  • Zhengrong Wu
  • Akira Ono
  • Masatsune Kainosho
  • Ad Bax


Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R and R1 measurements on the C1′, C3′, and C4′ carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)−1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.

anisotropy 13C relaxation Dickerson dodecamer diffusion anisotropy nucleic acids rotational diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akke, M. and Palmer, A.G. (1996) J. Am. Chem. Soc., 118, 911-912.Google Scholar
  2. Akke, M., Fiala, R., Jiang, F., Patal, D. and Palmer, A.G.I. (1997) RNA, 3, 702-709.Google Scholar
  3. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269-5278.Google Scholar
  4. Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 63, 207-213.Google Scholar
  5. Bevington, P.R. and Robinson, D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  6. Blackledge, M., Cordier, F., Dosset, P. and Marion, D. (1998) J. Am. Chem. Soc., 120, 4538-4539.Google Scholar
  7. Boisbouvier, J., Brutscher, B., Pardi, A., Marion, D. and Simorre, J.P. (2000) J. Am. Chem. Soc., 122, 6779-6780.Google Scholar
  8. Boisbouvier, J., Brutscher, B., Simorre, J.P. and Marion, D. (1999) J. Biomol. NMR, 14, 241-252.Google Scholar
  9. Borer, P.N., Laplante, S.R., Kumar, A., Zanatta, N., Martin, A., Hakkinen, A. and Levy, G.C. (1994) Biochemistry, 33, 2441-2450.Google Scholar
  10. Bruschweiler, R., Liao, X.B. and Wright, P.E. (1995) Science, 268, 886-889.Google Scholar
  11. Copie, V., Tomita, Y., Akiyama, S.K., Aota, S., Yamada, K.M., Venable, R.M., Pastor, R.W., Krueger, S. and Torchia, D.A. (1998) J. Mol. Biol., 277, 663-682.Google Scholar
  12. Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M.A., Marion, D. and Blackledge, M. (1998) J. Mol. Biol., 281, 341-361.Google Scholar
  13. Dejaegere, A.P., and Case, D.A. (1998) J. Phys. Chem. A., 102, 5280-5289.Google Scholar
  14. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995), J. Biomol. NMR, 6, 277-293.Google Scholar
  15. Delaglio, F., Wu, Z.R. and Bax, A. (2001) J. Magn. Reson., 149, 276-281.Google Scholar
  16. Dickerson, R.E. and Drew, H.R. (1981) J. Mol. Biol., 149, 761-786.Google Scholar
  17. Dosset, P., Hus, J.C., Blackledge, M. and Marion, D. (2000) J. Biomol. NMR, 16, 23-28.Google Scholar
  18. Felli, I.C., Richter, C., Griesinger, C. and Schwalbe, H. (1999) J. Am. Chem. Soc., 121, 1956-1957.Google Scholar
  19. Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93-141.Google Scholar
  20. Ghose, R., Fushman, D. and Cowburn, D. (2001) J. Magn. Reson., 149, 204-217.Google Scholar
  21. Hansen, A.P., Petros, A.M., Meadows, R.P. and Fesik, S.W. (1994) Biochemistry, 33, 15418-15424.Google Scholar
  22. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-8979.Google Scholar
  23. Klosterman, P.S., Shah, S.A. and Steitz, T.A. (1999) Biochemistry, 38, 14784-14792.Google Scholar
  24. Kojima, C., Ono, A., Kainosho, M. and James, T.L. (1998) J. Magn. Reson., 135, 310-333.Google Scholar
  25. Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. and Kay, L.E. (2002) J. Am. Chem. Soc., 124, 10743-10753.Google Scholar
  26. Lavery, R. and Sklenar, H. (1988) J. Biomol. Struct. Dyn., 6, 63-91.Google Scholar
  27. Lee, L.K., Rance, M., Chazin, W.I. and Palmer, A.G.I. (1997) J. Biomol. NMR, 9, 287-298.Google Scholar
  28. Ono, A.M., Shiina, T., Ono, A. and Kainosho, M. (1998) Tetrahedron Lett., 39, 2793-2796.Google Scholar
  29. Osborne, M.J. and Wright, P.E. (2001) J. Biomol. NMR, 19, 209-230.Google Scholar
  30. Paquet, F., Gaudin, F. and Lancelot, G. (1996) J. Biomol. NMR, 8, 252-260.Google Scholar
  31. Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308-332.Google Scholar
  32. Ravikumar, M., Shukla, R. and Bothner-By, A.A. (1991) J. Chem. Phys., 95, 3092-3098.Google Scholar
  33. Richter, C., Reif, B., Griesinger, C. and Schwalbe, H. (2000) J. Am. Chem. Soc., 122, 12728-12781.Google Scholar
  34. Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson. Ser. B, 105, 211-224.Google Scholar
  35. Shui, X.Q., McFail-Isom, L., Hu, G.G. and Williams, L.D. (1998) Biochemistry, 37, 8341-8355.Google Scholar
  36. Sklenar, V., Torchia, D. and Bax, A. (1987) J. Magn. Reson., 73, 375-379.Google Scholar
  37. Spielmann, H.P. (1998) Biochemistry, 37, 5426-5438.Google Scholar
  38. Tirado, M.M. and Garciadelatorre, J. (1980) J. Chem. Phys., 73, 1986-1993.Google Scholar
  39. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562-12566.Google Scholar
  40. Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443-449.Google Scholar
  41. Tjandra, N., Tate, S., Ono, A., Kainosho, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 6190-6200.Google Scholar
  42. Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273-284.Google Scholar
  43. Ulmer, T.S., Werner, J.M. and Campbell, I.D. (2002) Structure, 10, 901-911.Google Scholar
  44. Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748-754.Google Scholar
  45. Wand, A.J., Urbauer, J.L., McEvoy, R.P. and Bieber, R.J. (1996) Biochemistry, 35, 6116-6125.Google Scholar
  46. Wang, A.C. and Bax, A. (1993) J. Biomol. NMR, 3, 715-720.Google Scholar
  47. Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K. and Dickerson, R.E. (1980) Nature, 287, 755-758.Google Scholar
  48. Withka, J.M., Swaminathan, S., Srinivasan, J., Beveridge, D.L. and Bolton, P.H. (1992) Science, 255, 597-599.Google Scholar
  49. Woessner, D.E. (1962) J. Chem. Phys., 37, 647-654.Google Scholar
  50. Wu, Z.R., Delaglio, F., Tjandra, N., Zhurkin, V.B. and Bax, A. (2003) J. Biomol. NMR, 26, 297-315.Google Scholar
  51. Wu, Z.R., Tjandra, N. and Bax, A. (2001a) J. Am. Chem. Soc., 123, 3617-3618.Google Scholar
  52. Wu, Z.R., Tjandra, N. and Bax, A. (2001b) J. Biomol. NMR, 19, 367-370.Google Scholar
  53. Yamazaki, T., Muhandiram, R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 8266-8278.Google Scholar
  54. Zweckstetter, M. and Bax, A. (2002) J. Biomol. NMR, 23, 127-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jerome Boisbouvier
    • 1
  • Zhengrong Wu
    • 1
  • Akira Ono
    • 2
  • Masatsune Kainosho
    • 2
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaU.S.A
  2. 2.CREST and Graduate School of ScienceTokyo Metropolitan UniversityHachioji, TokyoJapan

Personalised recommendations