Journal of Biomolecular NMR

, Volume 27, Issue 2, pp 151–157 | Cite as

Measuring the χ1 torsion angle in protein by CH-CH cross-correlated relaxation: A new resolution-optimised experiment

  • Teresa CarlomagnoEmail author
  • Wolfgang Bermel
  • Christian Griesinger


Here we introduce an experiment with high sensitivity and resolution for the measurement of CH-CH dipolar-dipolar cross-correlated relaxation rates (CCRR) in protein side-chains. The new methodology aims to the determination of structural and dynamical parameters around the torsion angle χ1 by measuring CαHα-CβHβ cross-correlated relaxation rates. The method is validated on the protein ubiquitin: the χ1 angles determined from the CCRR data are compared with the χ1 angles of a previously determined NMR structure. The agreement between the two data sets is excellent for most residues. The few discrepancies that were found between the CCR-derived χ1 angles and the angles of the previously determined NMR structure could be explained by taking internal motion into account. The new methodology represents a very powerful tool to determine both structure and dynamics of protein side-chains in only one experiment.

CH dipole cross-correlated relaxation dynamics side-chain conformation ubiquitin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartik, K. and Redfield, C. (1993) J. Biomol. NMR, 3, 415-428.Google Scholar
  2. Boisbouvier, J., Brutscher, B., Pardi, A., Marion, D. and Simorre, J.-P. (2000) J. Am. Chem. Soc., 122, 6779-6780.Google Scholar
  3. Bremi, T., Bruschweiler, R. and Ernst, R.R. (1997) J. Am. Chem. Soc., 119, 4272-4284.Google Scholar
  4. Brüschweiler, R. and Wright, P.E. (1994) J. Am. Chem. Soc., 116, 8426-8427.Google Scholar
  5. Carlomagno, T., Blommers, M.J.J., Meiler, J., Cuenoud, B. and Griesinger, C. (2001) J. Am. Chem. Soc., 123, 7364-7370.Google Scholar
  6. Carlomagno, T., Felli, I.C., Czech, M., Fischer, R., Sprinzl, M. and Griesinger, C. (1999) J. Am. Chem. Soc., 121, 1945-1948.Google Scholar
  7. Chiarparin, E., Pelupessy, P., Ghose, R. and Bodenhausen, G. (2000) J. Am. Chem. Soc., 122, 1758-1771.Google Scholar
  8. Felli, I.C., Richter, C., Griesinger, C. and Schwalbe, H. (1999) J. Am. Chem. Soc., 121, 1956-1957.Google Scholar
  9. Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426-434.Google Scholar
  10. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-204Google Scholar
  11. Eggenberger, U., Karim-Nejad, Y., Thüring, H., Rüterjans, H. and Griesinger, C. (1992) J. Biomol. NMR, 2, 583-590.Google Scholar
  12. Hu, J.-S. and Bax, A. (1997a) J. Biomol. NMR, 9, 323-328.Google Scholar
  13. Hu, J.-S. and Bax, A. (1997b) J. Am. Chem. Soc., 119, 6360-6368.Google Scholar
  14. Konrat, R., Muhandiram, D.R., Farrow, N.A. and Kay, L.E. (1997) J. Biomol. NMR, 9, 409-422.Google Scholar
  15. Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230-1233.Google Scholar
  16. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732-738.Google Scholar
  17. Yang, D. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 9880-9887.Google Scholar
  18. Yang, D., Konrat, R. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 11938-11940.Google Scholar
  19. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531-544.Google Scholar
  20. Vuister, G.W., Wang, A.C. and Bax, A. (1993) J. Am. Chem. Soc., 115, 5334-5335.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Teresa Carlomagno
    • 1
    Email author
  • Wolfgang Bermel
    • 2
  • Christian Griesinger
    • 1
  1. 1.Department of NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Bruker Biospin GmbHRheinstettenGermany

Personalised recommendations