Journal of Biomolecular NMR

, Volume 27, Issue 2, pp 151–157 | Cite as

Measuring the χ1 torsion angle in protein by CH-CH cross-correlated relaxation: A new resolution-optimised experiment

  • Teresa Carlomagno
  • Wolfgang Bermel
  • Christian Griesinger
Article

Abstract

Here we introduce an experiment with high sensitivity and resolution for the measurement of CH-CH dipolar-dipolar cross-correlated relaxation rates (CCRR) in protein side-chains. The new methodology aims to the determination of structural and dynamical parameters around the torsion angle χ1 by measuring CαHα-CβHβ cross-correlated relaxation rates. The method is validated on the protein ubiquitin: the χ1 angles determined from the CCRR data are compared with the χ1 angles of a previously determined NMR structure. The agreement between the two data sets is excellent for most residues. The few discrepancies that were found between the CCR-derived χ1 angles and the angles of the previously determined NMR structure could be explained by taking internal motion into account. The new methodology represents a very powerful tool to determine both structure and dynamics of protein side-chains in only one experiment.

CH dipole cross-correlated relaxation dynamics side-chain conformation ubiquitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartik, K. and Redfield, C. (1993) J. Biomol. NMR, 3, 415-428.Google Scholar
  2. Boisbouvier, J., Brutscher, B., Pardi, A., Marion, D. and Simorre, J.-P. (2000) J. Am. Chem. Soc., 122, 6779-6780.Google Scholar
  3. Bremi, T., Bruschweiler, R. and Ernst, R.R. (1997) J. Am. Chem. Soc., 119, 4272-4284.Google Scholar
  4. Brüschweiler, R. and Wright, P.E. (1994) J. Am. Chem. Soc., 116, 8426-8427.Google Scholar
  5. Carlomagno, T., Blommers, M.J.J., Meiler, J., Cuenoud, B. and Griesinger, C. (2001) J. Am. Chem. Soc., 123, 7364-7370.Google Scholar
  6. Carlomagno, T., Felli, I.C., Czech, M., Fischer, R., Sprinzl, M. and Griesinger, C. (1999) J. Am. Chem. Soc., 121, 1945-1948.Google Scholar
  7. Chiarparin, E., Pelupessy, P., Ghose, R. and Bodenhausen, G. (2000) J. Am. Chem. Soc., 122, 1758-1771.Google Scholar
  8. Felli, I.C., Richter, C., Griesinger, C. and Schwalbe, H. (1999) J. Am. Chem. Soc., 121, 1956-1957.Google Scholar
  9. Griesinger, C. and Eggenberger, U. (1992) J. Magn. Reson., 97, 426-434.Google Scholar
  10. Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-204Google Scholar
  11. Eggenberger, U., Karim-Nejad, Y., Thüring, H., Rüterjans, H. and Griesinger, C. (1992) J. Biomol. NMR, 2, 583-590.Google Scholar
  12. Hu, J.-S. and Bax, A. (1997a) J. Biomol. NMR, 9, 323-328.Google Scholar
  13. Hu, J.-S. and Bax, A. (1997b) J. Am. Chem. Soc., 119, 6360-6368.Google Scholar
  14. Konrat, R., Muhandiram, D.R., Farrow, N.A. and Kay, L.E. (1997) J. Biomol. NMR, 9, 409-422.Google Scholar
  15. Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230-1233.Google Scholar
  16. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732-738.Google Scholar
  17. Yang, D. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 9880-9887.Google Scholar
  18. Yang, D., Konrat, R. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 11938-11940.Google Scholar
  19. Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531-544.Google Scholar
  20. Vuister, G.W., Wang, A.C. and Bax, A. (1993) J. Am. Chem. Soc., 115, 5334-5335.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Teresa Carlomagno
    • 1
  • Wolfgang Bermel
    • 2
  • Christian Griesinger
    • 1
  1. 1.Department of NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Bruker Biospin GmbHRheinstettenGermany

Personalised recommendations