Photosynthesis Research

, Volume 76, Issue 1–3, pp 207–215 | Cite as

A molecular understanding of complementary chromatic adaptation

  • Arthur R. Grossman


Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented in this essay.

Lawrence Bogorad Donald Bryant John Cobley Pamela Conley complementary chromatic adaptation Nancy Federspiel Alexander Glazer David Kehoe Clark Lagarias Peggy Lemaux linear tetrapyrrole photoperception phycobilisomes red and green light Michael Schaefer Nicole Tandeau de Marsac 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfonso M, Perewoska I, Constant S and Kirilovsky D (1999) Redox control of psbA expression in cyanobacteria Synechocystis strains. J Photochem Photobiol 48: 104–113CrossRefGoogle Scholar
  2. Appleby JL, Parkinson JS and Bourret RB (1996) The multi-step phosphorelay: not necessarily a road less traveled. Cell 86: 845–848PubMedCrossRefGoogle Scholar
  3. Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10: 3625–3634PubMedCrossRefGoogle Scholar
  4. Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435PubMedCrossRefGoogle Scholar
  5. Bhaya D, Takahashi A and Grossman AR (2001) Light regulation of Type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci USA 13: 7540–7545CrossRefGoogle Scholar
  6. Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369–401CrossRefGoogle Scholar
  7. Bruns B, Briggs WR and Grossman AR (1989) Molecular characterization of phycobilisome regulatory mutants in Fremyella diplosiphon. J Bacteriol 171:901–908PubMedGoogle Scholar
  8. Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: general mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425–429PubMedCrossRefGoogle Scholar
  9. Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes: evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119: 415–424PubMedCrossRefGoogle Scholar
  10. Casey ES and Grossman AR (1994) In vivo and in vitro characterization of the light-regulated cpcB2A2 promoter of Fremyella diplosiphon. J Bacteriol 176: 6362–6374PubMedGoogle Scholar
  11. Casey ES, Kehoe DM and Grossman AR (1997) Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation. J Bacteriol 179: 4599–4606PubMedGoogle Scholar
  12. Chiang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415–9419PubMedCrossRefGoogle Scholar
  13. Clegg D and Koshland D (1984) The role of a signaling protein in bacterial sensing: behavioral effects of increased gene expression. Proc Natl Acad Sci USA 81: 5056–5060PubMedCrossRefGoogle Scholar
  14. Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacteirum Fremyella diplosiphon. J Bacteriol 153: 1486–1492PubMedGoogle Scholar
  15. Cobley JG, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger H, Weerasuriya S and Navankasattusas S (1993) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon. Plasmid 30: 90–105PubMedCrossRefGoogle Scholar
  16. Cobley JG, Clark AC, Weerasurya S, Queseda FA, Xiao JY, Bandrapali N, D'silva I, Thounaojam M, Oda JF, Sumiyoshi T and Chu MH (2002) CpeR is an activator required for expression of the phycoerythrin operon (cpeBA) in the cyanobacterium Fremyella diplosiphon and is encoded in the phycoerythrin linker-polypeptide operon (cpeCDESTR). Mol Microbiol 44:1517–1531PubMedCrossRefGoogle Scholar
  17. Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550–553PubMedGoogle Scholar
  18. Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacteirum Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924–3928PubMedCrossRefGoogle Scholar
  19. Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465PubMedCrossRefGoogle Scholar
  20. Davis SJ, Vener AV and Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286: 2517–2520PubMedCrossRefGoogle Scholar
  21. Diakoff S and Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385PubMedGoogle Scholar
  22. Durnford DG and Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53: 229–241CrossRefGoogle Scholar
  23. Engelmann TW (1883a) Farbe und Assimilation. Assimilation findet nur in den farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusamennhang zwischen Lichtabsorption und Assimilation. Bot Z 41: 1–13Google Scholar
  24. Engelmann TW (1883b) Farbe und Assimilation. III. Weitere Folgerungen. Bot Z 41: 17–29Google Scholar
  25. Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Planzenzellen. I. Das Mikrospectrophotometer ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittlung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorptionsgrösse. Bot Z 42: 97–105Google Scholar
  26. Escoubas J-M, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241PubMedCrossRefGoogle Scholar
  27. Fairchild CD and Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin a subunit phycocyanobilin lyase. J Biol Chem 269: 8686–8694PubMedGoogle Scholar
  28. Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin a-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017–7021PubMedCrossRefGoogle Scholar
  29. Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072–4081PubMedGoogle Scholar
  30. Federspiel NA and Scott L (1992) Characterization of a lightregulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J Bacteriol 179: 5994–5998Google Scholar
  31. Fujita Y, Murakami A and Ohki K (1987) Regulation of photosystem composition in the cyanobacterial photosynthetic system: the regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol 28: 283–292Google Scholar
  32. Fujita Y, Murakami A, Aizawa K and Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 677–692. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  33. Gaidukov N (1903) Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. Ber Deutsch Bot Ges 21: 517–522Google Scholar
  34. Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347CrossRefGoogle Scholar
  35. Gantt E and Conti SF (1966a) Phycobiliprotein localization in algae. Brookhaven Sym Biol 19: 393–405Google Scholar
  36. Gantt E and Conti SF (1966b) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29: 423–430PubMedCrossRefGoogle Scholar
  37. Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sindler W and Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205: 907–915PubMedCrossRefGoogle Scholar
  38. Glauser M, Sidler W and Zuber H (1993) Isolation, characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complexes from the phycobilisome of Mastigocladus laminosus. Photochem Photobiol 57: 344–351Google Scholar
  39. Glazer AN (1982) Phycobilisomes: structure and dynamics. Annu Rev Microbiol 36: 173–198PubMedCrossRefGoogle Scholar
  40. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Chem 14: 47–77CrossRefGoogle Scholar
  41. Glazer AN and Cohen-Bazire G (1971) Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad Sci USA 68: 1398–1401PubMedCrossRefGoogle Scholar
  42. Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a ‘simple’ phycobilisome. Annals Institut Pasteur/ Microbiol 134B: 159–180Google Scholar
  43. Grossman AR, Schaefer M, Chiang G and Collier J (1994) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 641–675. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  44. Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Lightharvesting complexes in oxygenic photosynthesis: diversity, control and evolution. Annu Rev Genet 29: 231–287PubMedCrossRefGoogle Scholar
  45. Grossman AR, Bhaya D and He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276: 11449–52PubMedCrossRefGoogle Scholar
  46. Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835–839PubMedGoogle Scholar
  47. Kahn K and Schaefer MR (1997)rpbA controls transcription of the constitutive phycocyanin gene set in Fremyella diplosiphon. J Bacteriol 179: 7695–7704PubMedGoogle Scholar
  48. Kahn K, Mazel D, Houmard J, Tandeau de Marsac N and Schaefer MR (1997) A role for CpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179: 998–1006PubMedGoogle Scholar
  49. Kehoe DM and Grossman AR (1995) The use of site directed mutagenesis in the analysis of complementary chromatic adaptation. In: Mathis P (ed.) Proceedings from the Xth International Photosynthesis Congress: Photosynthesis: from Light to Biosphere, pp 501–504. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  50. Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412PubMedGoogle Scholar
  51. Kehoe DM and Grossman AR (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol 179: 3914–3921PubMedGoogle Scholar
  52. Li H and Sherman LA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182: 4268–4277PubMedCrossRefGoogle Scholar
  53. Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675–2684PubMedGoogle Scholar
  54. Manna P, Nieder RP and Schaefer MR (2000) DNA-binding properties of the Fremyella diplosiphon RpbA repressor. J Bacteriol 182: 51–56PubMedCrossRefGoogle Scholar
  55. Mazel D and Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature (London) 341: 245–248PubMedCrossRefGoogle Scholar
  56. Mazel D, Guglielmi G, Houmard H, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res 14: 8279–8290PubMedGoogle Scholar
  57. Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296–304CrossRefGoogle Scholar
  58. Oelmüller R, Conley PB, Federspiel N, Briggs WR and Grossman AR (1988a) Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphon to different light qualities. Plant Physiol 88: 1077–1083PubMedGoogle Scholar
  59. Oelmüller R, Grossman AR and Briggs WR (1988b) Photoreversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88: 1084–1091PubMedCrossRefGoogle Scholar
  60. Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71–112PubMedCrossRefGoogle Scholar
  61. Perego M and Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97–101PubMedCrossRefGoogle Scholar
  62. Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta 501: 232–245PubMedCrossRefGoogle Scholar
  63. Ravid S, Matsumura P and Eisenbach M (1986) Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY. Proc Natl Acad Sci USA 83: 7157–7161PubMedCrossRefGoogle Scholar
  64. Schirmer T, Huber R, Schneider M, Bode W, Miller M and Hackert ML (1986) Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188: 651–676PubMedCrossRefGoogle Scholar
  65. Schmitt-Goff CM and Federspeil NA (1993) In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol 175: 1806–1813Google Scholar
  66. Schwarz R and Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci USA 95: 11008–11013PubMedCrossRefGoogle Scholar
  67. Searle GFW, Barber J, Porter G and Tredwell CJ (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light-harvesting complex (phycobilisomes). Biochim Biophys Acta 501: 246–256PubMedCrossRefGoogle Scholar
  68. Seib LO and Kehoe DM (2002) A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides. J Bacteriol 184: 962–970PubMedCrossRefGoogle Scholar
  69. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 139–216. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  70. Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNAbinding proteins and modulation by phosphorylation. EMBO J 12: 997–1004PubMedGoogle Scholar
  71. Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91PubMedGoogle Scholar
  72. Tandeau de Marsac N (1983) Phycobilisomes and complementary adaptation in cyanobacteria. Bull Inst Pasteur 81: 201–254Google Scholar
  73. Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Revi 104: 119–190CrossRefGoogle Scholar
  74. Tandeau de Marsac D, Mazel D, Damerval T, Guglielmi G, Capuano V and Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC7601. Photosynth Res 18: 99–132CrossRefGoogle Scholar
  75. van Waasbergen LG, Dolganov N and Grossman AR (2002) Environmental control depends on PAS domain-bearing sensor protein. J Bacteriol 184: 2481–2490PubMedCrossRefGoogle Scholar
  76. Vogelmann TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233–239CrossRefGoogle Scholar
  77. Wilde A, Churin Y, Schubert H and Borner T (1997) Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS Lett 406: 89–92PubMedCrossRefGoogle Scholar
  78. Wilde A, Fiedler B and Borner T (2002) The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol 44: 981–988PubMedCrossRefGoogle Scholar
  79. Wolfe AJ, Conley P, Kramer TJ and Berg HC (1987) Reconstitution of signaling in bacterial chemotaxis. J Bacteriol 169: 1878–1885PubMedGoogle Scholar
  80. Yamaguchi S, Aizawa S-I, Kihara M, Isomura M, Jones CJ and Macnab RM (1986) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172–1179PubMedGoogle Scholar
  81. Yeh KC and Lagarias JC (1998) Eukaryotic phytochromes: lightregulated serine/threonine protein-kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 95: 13976–13981PubMedCrossRefGoogle Scholar
  82. Yeh KC, Wu S-H, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277: 1505–1508PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Arthur R. Grossman
    • 1
  1. 1.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA (

Personalised recommendations