Biologia Plantarum

, Volume 46, Issue 4, pp 491–506 | Cite as

Participation of Phytohormones in the Stomatal Regulation of Gas Exchange During Water Stress

  • J. Pospíšilová


Almost all processes in the life of a plant are directly or indirectly affected by both stresses and phytohormones. Nevertheless, apart from abscisic acid, the role of phytohormones in plant response to water stress is far from being fully elucidated. This review tries to answer the question whether interactions between abscisic acid and some other phytohormones might be important in the regulation of stomatal opening during water stress and subsequent rehydration. Firstly, it describes the changes in the contents of individual endogenous phytohormones during water stress. Then, it deals with the effects of applied phytohormones on stomatal opening, and on transpiration and photosynthetic rates in different plants species. Finally, it focuses on the alleviation or stimulation of absicic acid-induced stomatal closure by application of other phytohormones.

abscisic acid auxins brassinosteroids chlorophyll cytokinins ethylene gibberellins jasmonates leaf water potential net photosynthetic rate stomatal conductance transpiration rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Mandour, A.A., Hartung, W.: Tissue culture of the desert plant Anastatica hierochuntica.-Plant Cell Rep. 14: 657–661, 1995.Google Scholar
  2. Agarwal, R.K., Gupta, S.C.: Plant growth substances as osmoregulants under salt stress in callus cultures of cowpea.-Indian J. Plant Physiol. 38: 325–327, 1995.Google Scholar
  3. Aguilar, M.L., Espadas, F.L., Coello, J., Maust, B.E., Trejo, C., Robert, M.L., Santamaria, J.M.: The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field.-J. exp. Bot. 51: 1861–1866, 2000.PubMedGoogle Scholar
  4. Aharoni, N.: Relationship between leaf water status and endogenous ethylene in detached leaves.-Plant Physiol. 61: 658–662, 1978.PubMedGoogle Scholar
  5. Aharoni, N., Blumenfeld, A., Richmond, A.E.: Hormonal activity in detached lettuce leaves as affected by leaf water content.-Plant Physiol. 59: 1169–1173, 1977.PubMedGoogle Scholar
  6. Allen, G.J., Amtmann, A., Sanders, D.: Calcium-dependent and calcium-independent K+ mobilization channels in Vicia faba guard cell vacuoles.-J. exp. Bot. 49 (Spec. Issue): 305–318, 1998.Google Scholar
  7. Alves, A.A.C., Setter, T.L.: Response of cassava to water deficit: leaf area growth and abscisic acid.-Crop Sci. 40: 131–137, 2000.CrossRefGoogle Scholar
  8. Ashraf, M., Karim, F., Rasul, E.: Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance.-Plant Growth Regul. 36: 49–59, 2002.Google Scholar
  9. Assmann, S.M., Armstrong, F.: Hormonal regulation of ion transporters: the guard cell system.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 337–361. Elsevier, Amsterdam 1999.Google Scholar
  10. Assmann, S.M., Shimazaki, K.-I.: The multisensory guard cell. Stomatal responses to blue light and abscisic acid.-Plant Physiol. 119: 337–361, 1999.Google Scholar
  11. Assmann, S.M., Snyder, J.A., Lee, Y.-R.J.: ABA-deficient (abal) and ABA-insensitive (abi1–1, abi2–1) mutants of Arabidopsis have a wild-type stomatal response to humidity.-Plant Cell Environ. 23: 387–395, 2000.Google Scholar
  12. Atanassova, L.Y., Stoyanov, I.G., Pissarska, M.G.: Salt-induced responses of endogenous cytokinins in pea plants.-Biol. Plant. 42(Suppl.): S73, 1999.Google Scholar
  13. Augé, R.M., Green, C.D., Stodola, A.J.W., Saxton, A.M., Olinick, J.B., Evans, R.M.: Correlations of stomatal conductance with hydraulic and chemical factors in several deciduous tree species in a natural habitat.-New Phytol. 145: 483–500, 2000.Google Scholar
  14. Badenoch-Jones, J., Parker, C.W., Letham, D.S., Singh, S.: Effect of cytokinins supplied via the xylem at multiplies of endogenous concentrations on transpiration and senescence in derooted seedlings of oat and wheat.-Plant Cell Environ. 19: 504–516, 1996.Google Scholar
  15. Bano, A., Dörfling, K., Bettin, D., Hahn, H.: Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil.-Aust. J. Plant Physiol. 20: 109–115, 1993.Google Scholar
  16. Barkla, B.J., Vera-Estrella, R., Maldonado-Gama, M., Pantoja, O.: Abscisic acid induction of vacuolar H+-ATPase activity in Mesembryanthemum crystallinum is developmentally regulated.-Plant Physiol. 120: 811–819, 1999.PubMedGoogle Scholar
  17. Bauly, J.M., Sealy, I.M., Macdonald, H., Brearley, J., Dröge, S., Hillmer, S., Robinson, D.G., Venis, M.A., Blatt, M.R., Lazarus, C.M., Napier, R.M.: Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin.-Plant Physiol. 124: 1229–1238, 2000.PubMedGoogle Scholar
  18. Beltrano, J., Ronco, M.G., Montaldi, E.R., Carbone, A.: Senescence of flag leaves and ears of wheat hastened by methyl jasmonate.-J. Plant Growth Regul. 17: 53–57, 1998.Google Scholar
  19. Bishnoi, N.R., Krishnamoorthy, H.N.: Effect of waterlogging and gibberellic acid on leaf gas-exchange in peanut (Arachis hypogaea L.).-J. Plant Physiol. 139: 503–505, 1992.Google Scholar
  20. Blackman, P.G., Davies, W.J.: The effect of cytokinins and ABA on stomatal behaviour of maize and Commelina.-J. exp. Bot. 34: 1619–1626, 1983.Google Scholar
  21. Blackman, P.G., Davies, W.J.: Age-related changes in stomatal response to cytokinins and abscisic acid.-Ann. Bot. 54: 121–125, 1984.Google Scholar
  22. Blackman, P.G., Davies, W.J.: Root to shoot communication in maize plants of the effect of soil drying.-J. exp. Bot. 36: 39–48, 1985.Google Scholar
  23. Blatt, M.: Cellular signaling and volume control in stomatal movements in plants.-Annu. Rev. cell. dev. Biol. 16: 221–241, 2000.PubMedGoogle Scholar
  24. Blatt, M.R., Thiel, G.: K+ channels of stomatal guard cells: bimodal control of the K+ inward-rectifier evoked by auxin.-Plant J. 5: 55–68, 1994.PubMedGoogle Scholar
  25. Borel, C., Frey, A., Marion-Poll, A., Tardieu, F., Simonneau, T.: Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought?-Plant Cell Environ. 24: 477–489, 2001.Google Scholar
  26. Borel, C., Simonneau, T., This, D., Tardieu, F.: Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins.-Aust. J. Plant Physiol. 24: 607–615, 1997.Google Scholar
  27. Borel, C., Audran, C., Frey, A., Marion-Poll, A., Tardieu, F., Simonneau, T.: N. plumbaginifolia zeaxanthin epoxidase trasgenic lines have unaltered baseline ABA accumulation in roots and xylem sap, but contrasting sensitivities of ABA acumulation to water deficit.-J. exp. Bot. 52 (Root Special Issue): 427–434, 2001.PubMedGoogle Scholar
  28. Brault, M., Maldiney, R.: Mechanisms of cytokinin action.-Plant Physiol.Biochem. 37: 403–412, 1999.Google Scholar
  29. Čatský, J., Pospíšilová, J., Kamínek, M., Gaudinová, A., Pulkrábek, J., Zahradníček, J.: Seasonal changes in sugar beet photosynthesis as affected by exogenous cytokinin N 6-(m-hydroxybenzyl)adenosine.-Biol. Plant. 38: 511–518, 1996.Google Scholar
  30. Cellier, F., Conéjéro, G., Breitler, J.-C., Casse, F.: Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower.-Plant Physiol. 116: 319–328, 1998.PubMedGoogle Scholar
  31. Correia, M.J., Pereira, J.S.: The control of leaf conductance of white lupin by xylem ABA concentration decreases with the severity of water deficits.-J. exp. Bot. 46: 101–110, 1995.Google Scholar
  32. Correia, M.J., Pereira, J.S., Chaves, M.M., Rodrigues, M.L., Pacheco, C.A.: ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants.-Plant Cell Environ. 18: 511–521, 1995.Google Scholar
  33. Correia, M.J., Rodrigues, M.L., Ferreira, M.I., Pereira, J.S.: Diurnal changes in the relationship between stomatal conductance and abscisic acid in the xylem sap of field grown peach trees.-J. exp. Bot. 48: 1727–1736, 1997.Google Scholar
  34. Correia, M.J., Rodrigues, M.L., Osório, M.L., Chaves, M.M.: Effect of growth temperature on the response of lupin stomata to drought and abscisic acid.-Aust. J. Plant Physiol. 26: 549–559, 1999.CrossRefGoogle Scholar
  35. Cousson, A.: Pharmacological evidence for the implication of both cyclic GMP-dependent and-independent transduction pathways within auxin-induced stomatal opening in Commelina communis (L.).-Plant Sci. 161: 249–258, 2001.PubMedGoogle Scholar
  36. Cousson, A., Vavasseur, A.: Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L.-Planta 206: 308–314, 1998.Google Scholar
  37. Cowan, A.K., Cairns, A.L.P., Bartels-Rahm, B.: Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism.-J. exp. Bot. 50: 595–603, 1999.Google Scholar
  38. Cutler, A.J., Krochko, J.E.: Formation and breakdown of ABA.-Trends Plant Sci. 4: 472–478, 1999.PubMedGoogle Scholar
  39. Daeter, W., Hartung, W.: Stress-dependent redistribution of abscisic acid (ABA) in Hordeum vulgare L. leaves: the role of epidermal ABA metabolism, tonoplast transport and the cuticle.-Plant Cell Environ. 18: 1367–1376, 1995.Google Scholar
  40. Davies, W.J.: Some effects of abscisic acid and water stress on stomata of Vicia faba L.-J. exp. Bot. 29: 175–182, 1978.Google Scholar
  41. Davies, W.J., Jeffcoat, B. (ed.): Importance of Root to Shoot Communication in the Responses to Environmental Stress.-British Society for Plant Growth Regulation, Bristol 1990.Google Scholar
  42. Davies, W.J., Zhang, J.: Root signals and the regulation of growth and development of plants in drying soil.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 55–76, 1991.Google Scholar
  43. Diettrich, B., Mertinat, H., Luckner, M.: Reduction of water loss during ex vitro acclimatization of micropropagated Digitalis lanata clone plants.-Biochem. Physiol. Pflanz. 188: 23–31, 1992.Google Scholar
  44. Dietz, K.-J., Sauter, A., Wichert, K., Messdaghi, D., Hartung, W.: Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves.-J. exp. Bot. 51: 937–944, 2000.PubMedGoogle Scholar
  45. Drüge, U., Schönbeck, F.: Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels.-J. Plant Physiol. 141: 40–48, 1992.Google Scholar
  46. Dunlap, J.R., Binzel, M.L.: NaCl reduces indole-3–acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid.-Plant Physiol. 112: 379–384, 1996.PubMedGoogle Scholar
  47. Dunleavy, P.J., Ladley, P.D.: Stomatal responses of Vicia faba L. to indole acetic acid and abscisic acid.-J. exp. Bot. 46: 95–100, 1995.Google Scholar
  48. Eamus, D.: Further evidence in support of an interactive model in stomatal control.-J. exp. Bot. 37: 657–665, 1986.Google Scholar
  49. Eamus, D., Narayan, A.D.: The influence of prior water stress and abscisic acid foliar spraying on stomatal responses to CO2, IAA, ABA, and calcium in leaves of Solanum melongena.-J. exp. Bot. 40: 573–579, 1989.Google Scholar
  50. Emery, R.J.N., Atkins, C.A.: Roots and cytokinins.-In: Waisel, Y., Eshel, A., Kafkafi, U. (ed.): Plant Roots. The Hidden Half. 3rd Ed. Pp. 417–434. Marcel Dekker, New York-Basel 2002.Google Scholar
  51. Ephritikhine, G., Fellner, M., Vannini, C., Lapous, D., Barbier-Brygoo, H.: The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid.-Plant J. 18: 303–314, 1999.PubMedGoogle Scholar
  52. Estelle, M.: Auxin perception and signal transduction.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 411–421. Elsevier, Amsterdam 1999.Google Scholar
  53. Eun, S.O., Lee, Y.: Actin filaments of guard cells are reorganized in response to light and abscisic acid.-Plant Physiol. 115: 1491–1498, 1997.PubMedGoogle Scholar
  54. Fedina, I.S., Tsonev, T.D.: Effect of pretreatment with methyl jasmonate on the response of Pisum sativum to salt stress.-J. Plant Physiol. 151: 735–740, 1997.Google Scholar
  55. Franks, P.J., Farquhar, G.D.: The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana.-Plant Physiol. 125: 935–942, 2001.PubMedGoogle Scholar
  56. Freundl, E., Steudle, E., Hartung, W.: Apoplastic transport of abscisic acid through roots in maize: effect of exodermis.-Planta 210: 222–231, 2000.PubMedGoogle Scholar
  57. Fusseder, A., Wartinger, A., Hartung, W., Schulze, E.-D., Heilmeier, H.: Cytokinins in the xylem sap of desert grown almond (Prunus dulcis) trees: Daily courses and their possible interactions with abscisic acid and leaf conductance.-New Phytol. 122: 45–52, 1992.Google Scholar
  58. Galuszka, P., Frébort, I., Šebela, M., Sauer, P., Jacobsen, S., Peč, P.: Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals.-Eur. J. Biochem. 268: 450–461, 2001.PubMedGoogle Scholar
  59. Gehring, C.A., Irving, H.R., McConchie, R.M., Parish, R.W.: Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells.-Ann. Bot. 80: 485–489, 1997.Google Scholar
  60. Gehring, C.A., McConchie, R.M., Venis, M.A., Parish, R.W.: Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH.-Planta 205: 581–586, 1998.PubMedGoogle Scholar
  61. Goicoechea, N., Antolín, M.C., Sánchez-Díaz, M.: Gas exchange is related to the hormonal balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought.-Physiol. Plant. 100: 989–997, 1997.Google Scholar
  62. Goicoechea, N., Doležal, K., Antolín, M.C., Strnad, M., Sánchez-Díaz, M.: Influence of mycorrhizae and Rhizobium on cytokin content in drought-stressed alfalfa.-J. exp. Bot. 46: 1543–1549, 1995.Google Scholar
  63. Göring, H., Koshuchowa, S., Deckert, C.: Influence of gibberellic acid on stomatal movement.-Biochem. Physiol. Pflanz. 186: 367–374, 1990.Google Scholar
  64. Grabov, A., Blatt, M.R.: Co-ordination of signalling elements in guard cell ion channel control.-J. exp. Bot. 49: 351–360, 1998.Google Scholar
  65. Gunderson, C.A., Taylor, G.E., Jr.: Ethylene directly inhibits foliar gas exchange in Glycine max.-Plant Physiol. 95: 337–339, 1991.PubMedGoogle Scholar
  66. Gupta, S., Gupta, N.K., Kumar, A.: Effect of abscisic acid (ABA) and kinetin (Kn) on water loss from cowpea (Vigna unguiculata L.) seedlings.-Ann. Biol. 15: 77–79, 1999.Google Scholar
  67. Hare, P.D., Cress, W.A., Van Staden, J.: The involvement of cytokinins in plant responses to environmental stress.-Plant Growth Regul. 23: 79–103, 1997.Google Scholar
  68. Harris, M.J., Outlaw, W.H., Jr.: Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status.-Plant Physiol. 95: 171–173, 1991.PubMedGoogle Scholar
  69. Hartung, W., Radin, J.W.: Abscisic acid in the mesophyll apoplast and in the root xylem sap of water-stressed plants: the significance of pH gradients.-Curr. Topics Plant Biochem. Physiol. 8: 110–124, 1989.Google Scholar
  70. Hartung, W., Weiler, E.W., Radin, J.W.: Auxin and cytokinins in the apoplastic solution of dehydrated cotton leaves.-J. Plant Physiol. 140: 324–327, 1992.Google Scholar
  71. Hartung, W., Wilkinson, S., Davies, W.J.: Factors that regulate abscisic acid concentrations at the primary site of action at the guard cell.-J. exp. Bot. 49: 361–367, 1998.Google Scholar
  72. Heckenberger, U., Schurr, U., Schulze, E.-D.: Stomatal response to abscisic acid fed into the xylem of intact Helianthus annuus (L.) plants.-J. exp. Bot. 47: 1405–1412, 1996.Google Scholar
  73. Hedden, P.: Regulation of gibberellin biosynthesis.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 161–188. Elsevier, Amsterdam 1999.Google Scholar
  74. Herde, O., Peña-Cortés, H., Willmitzer, L., Fisahn, J.: Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants.-Plant Cell Environ. 20: 136,-141, 1997.Google Scholar
  75. Hetherington, A.M.: Guard cell signalling.-Cell 107: 711–714, 2001.PubMedGoogle Scholar
  76. Hirasawa, T., Wakabayashi, K., Touya, S., Ishihara, K.: Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (Helianthus annuus L.) grown under different conditions.-Plant Cell Physiol. 36: 955–964, 1995.Google Scholar
  77. Hooley, R.: Progress towards the identification of cytokinin receptors.-In: Sopory, S.K., Oelmüller, R., Maheshwari, S.C. (ed.): Signal Transduction in Plants. Current Advances. Pp. 193–199. Kluwer Academic/Plenum Publishers, New York-Boston-Dordrecht-London-Moscow 2001.Google Scholar
  78. Hose, E., Sauter, A., Hartung, W.: Abscisic acid in roots-biochemistry and physiology.-In: Waisel, Y., Eshel, A., Kafkafi, U. (ed.): Plant Roots. The Hidden Half. 3rd Ed. Pp. 435–448. Marcel Dekker, New York-Basel 2002.Google Scholar
  79. Hose, E., Steudle, E., Hartung, W.: Abscisic acid and hydraulic conductivity of maize roots: a study'using cell-and root-pressure probes.-Planta 211: 874–882, 2000.PubMedGoogle Scholar
  80. Huang, R.F., Wang, X.C., Lou, C.H.: Cytoskeletal inhibitors suppress the stomatal opening of Vicia faba L. induced by fusicoccin and IAA.-Plant Sci. 156: 65–71, 2000.PubMedGoogle Scholar
  81. Hubick, K.T., Taylor, J.S., Reid, D.M.: The effect of drought on levels of abscisic acid, cytokinins, gibberellins and ethylene in aeroponically-grown sunflower plants.-Plant Growth Regul. 4: 139–151, 1986.Google Scholar
  82. Ievinsh, G., Dreibante, G., Kruzmane, D.: Changes of l-aminocyclopropane-l-carboxylic acid oxidase activity in stressed Pinus sylvestris needles.-Biol. Plant. 44: 233–237, 2001.Google Scholar
  83. Incoll, L.D., Jewer, P.C.: Cytokinins and stomata.-In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (ed.): Stomatal Function. Pp. 281–292. Stanford University Press, Stanford 1987.Google Scholar
  84. Incoll, L.D., Ray, J.P., Jewer, P.C.: Do cytokinins act as root to shoot signals?-In: Davies, W.J., Jeffcoat, B. (ed.): Importance of Root to Shoot Communication in the Responses to Environmental Stress. Pp. 185–197. British Society for Plant Growth Regulation, Bristol 1990.Google Scholar
  85. Itai, C.: Role of phytohormones in plant responses to stresses.-In: Lerner, H.R. (ed.): Plant Responses to Environmental Stresses. From Phytohormones to Genome Reorganization. Pp. 287–301. Marcel Dekker, New York-Basel 1999.Google Scholar
  86. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Regulation of drought tolerance by gene manipulation of 9–cis-epoxycarotenoid diogenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.-Plant J. 27: 325–333, 2001.PubMedGoogle Scholar
  87. Jackson, G.E., Irvine, J., Grace, J., Khalil, A.A.M.: Abscisic acid concentrations and fluxes in droughted conifer saplings.-Plant Cell Environ. 18: 13–22, 1995.Google Scholar
  88. Jarvis, A.J., Davies, W.J.: Whole-plant ABA flux and the regulation of water loss in Cedrella odorata.-Plant Cell Environ. 20: 521–527, 1997.Google Scholar
  89. Jeschke, W.D., Holobradá, M., Hartung, W.: Growth of Zea mays L. with their seminal roots only. Effects on plant development, xylem transport, mineral nutrition and the flow and distribution of abscisic acid (ABA) as a possible shoot to root signal.-J. exp. Bot. 48: 1229–1239, 1997.Google Scholar
  90. Jia, W., Zhang, J.: Comparison of exportation and metabolism of xylem-delivered ABA in maize leaves at different water status and xylem sap pH.-Plant Growth Regul. 21: 43–49, 1997.Google Scholar
  91. Jia, W., Zhang, J., Liang, J.: Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.-J. exp. Bot. 52: 295–300, 2001.PubMedGoogle Scholar
  92. Jia, W., Zhang, J., Zhang, D.-P.: Metabolism of xylem-delivered ABA in relation to ABA flux and concentration in leaves of maize and Commelina communis.-J. exp. Bot. 47: 1085–1091, 1996.Google Scholar
  93. Jiang, C.-J., Nakajima, N., Kondo, N.: Disruption of microtubules by abscisic acid in guard cells of Vicia faba L.-Plant Cell Physiol. 37: 697–701, 1996.Google Scholar
  94. Jones, H.G.: Stomatal control of photosynthesis and transpiration.-J. exp. Bot. 49 (Special Issue): 387–398, 1998.Google Scholar
  95. Kamínek, M., Motyka, V., Vaňková, R.: Regulation of cytokinin content in plant cells.-Physiol. Plant. 101: 689–700, 1997.Google Scholar
  96. Koch, J.R., Schelzer, A.J., Eshita, S.M., Davis, K.R.: Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation.-Plant Physiol. 118: 1243–1252, 1998.Google Scholar
  97. Kudoyarova, G., Valcke, R., Teplova, I., Mustafina, A.: Cytokinin content and transpiration of transgenic tobacco plants containing heat-inducible ipt-gene as affected by high temperature.-Biol. Plant. 42(Suppl.): S75, 1999.Google Scholar
  98. Kuiper, D., Schuit, J., Kuiper, P.J.C.: Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals.-Plant Soil 123: 243–250, 1990.Google Scholar
  99. Kumar, B., Pandey, D.M., Goswami, C.L., Jain, S.: Effect of growth regulators on photosynthesis, transpiration and related parameters in water stressed cotton.-Biol. Plant. 44: 475–478, 2001.Google Scholar
  100. Lambers, H., Stuart Chapin, F., Pons, T.J.: Plant Physiological Ecology.-Springer, New York 1998.Google Scholar
  101. Lazova, G.N., Kicheva, M.I., Popova, L.P.: The effect of abscisic acid and methyl jasmonate on carbonic anhydrase activity in pea.-Photosynthetica 36: 631–634, 1999.Google Scholar
  102. Lechowski, Z.: Stomatal response to exogenous cytokinin treatment of the hemiparasite Melampyrum arvense L. before and after attachment to the host.-Biol. Plant. 39: 13–21, 1997.Google Scholar
  103. Lee, T.M., Lur, H.S., Lin, Y.H., Chu, C.: Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings.-Plant Cell Environ. 19: 65–74, 1996.Google Scholar
  104. Lemtiri-Chlieh, F., MacRobbie, E.A.C., Brearley, C.A.: Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells.-Proc. nat. Acad. Sci. USA 97: 8687–8692, 2000.PubMedGoogle Scholar
  105. Leshem, Y.Y., Gottlieb, H.E., Bach, D.: Surface tension-related mechanical effects of methyl jasmonate on membrane phospholipid.-J. Plant Physiol. 144: 691–695, 1994.Google Scholar
  106. Leung, J., Giraudat, J.: Abscisic acid signal transduction.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 199–222, 1998.PubMedGoogle Scholar
  107. Leymarie, J., Lascève, G., Vavasseur, A.: Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana.-Aust. J. Plant Physiol. 25: 785–791, 1998.Google Scholar
  108. Liang, J., Zhang, J.: The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering.-Plant Growth Regul. 29: 77–86, 1999.Google Scholar
  109. Liang, J., Zhang, J., Wong, M.H.: Stomatal conductance in relation to xylem sap abscisic acid concentrations in two tropical trees. Acacia confusa and Litsea glutinosa.-Plant Cell Environ. 19: 93–100, 1996.Google Scholar
  110. Liang, J., Zhang, J., Wong, M.H.: How do roots control xylem sap ABA concentration in response to soil drying?-Plant Cell Physiol. 38: 10–16, 1997.Google Scholar
  111. Liang, J., Zhang, J., Wong, M.H.: Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying?-Photosynth. Res. 51: 149–159, 1997.Google Scholar
  112. Liu, L., McDonald, A.J.S., Stadenberg, L, Davies, W.J.: Abscisic acid in leaves and roots of willow: significance for stomatal conductance.-Tree Physiol. 21: 759–764, 2001.PubMedGoogle Scholar
  113. Liu, X., Zhang, S.Q., Lou, C.H., Yu, F.Y.: Effect of localized scorch on the transport and distribution of exogenous jasmonic acid in Vicia faba.-Acta bot. sin. 44: 164–167, 2002.Google Scholar
  114. Lohse, G., Hedrich, R.: Anions modify the response of guard-cell anion channels to auxin.-Planta 197: 546–552, 1995.Google Scholar
  115. Luan, S.: Signalling drought in guard cells.-Plant Cell Environ. 25: 229–237, 2002.PubMedGoogle Scholar
  116. MacDonald, H.: Auxin perception and signal transduction.-Physiol. Plant. 100: 423–430, 1997.Google Scholar
  117. MacRobbie, E.A.C.: Signalling in guard cells and regulation of ion channel activity.-J. exp. Bot. 48: 515–528, 1997.Google Scholar
  118. Mansfield, T.A., Atkinson, C.J.: Stomatal behaviour in water stressed plants.-In: Alscher, R.G., Cumming, J.R. (ed.): Stress Responses in Plants: Adaptation and Acclimation Mechanisms. Pp. 241–264. Willey-Liss, New York 1990.Google Scholar
  119. Masia, A., Pitacco, A., Braggio, L., Giulivo, C.: Hormonal responses to partial drying of the root system of Helianthus annuus.-J. exp. Bot. 45: 69–76, 1994.Google Scholar
  120. Meinzer, F.C., Grantz, D.A., Smit, B.: Root signals mediate coordination of stomatal and hydraulic conductance in growing sugarcane.-Aust. J. Plant Physiol. 18: 329–338, 1991.Google Scholar
  121. Merrit, F., Kemper, A., Tallman, G.: Inhibitors of ethylene synthesis inhibits auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L.-Plant Cell Physiol. 42: 223–230, 2001.Google Scholar
  122. Mok, D.W.S., Mok, M.C.: Cytokinin metabolism and action.-Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 89–118, 2001.PubMedGoogle Scholar
  123. Mori, I.C., Muto, S.: Abscisic acid activates a 48–kilodalton protein kinase in guard cell protoplasts.-Plant Physiol. 113: 833–839, 1997.PubMedGoogle Scholar
  124. Morsucci, R., Curvetto, N., Delmastro, S.: Involvement of cytokinins and adenosine 3′,5′-cyclic monophosphate in stomatal movement in Vicia faba.-Plant Physiol. Biochem. 29: 537–547, 1991.Google Scholar
  125. Morsucci, R., Curvetto, N., Delmastro, S.: High concentration of adenosine or kinetin riboside induces stomatal closure in Vicia faba, probably through inhibition of adenylate cyclase.-Plant Physiol. Biochem. 30: 383–388, 1992.Google Scholar
  126. Mott, K.A., Buckley, T.N.: Stomatal heterogeneity.-J. exp. Bot. 49: 407–417, 1998.Google Scholar
  127. Munné-Bosch, S., Lopez-Carbonell, M., Alegre, L., Van Onckelen, H.A.: Effect of drought and high solar radiation on 1–aminocyclopropane-1–carboxylic acid and abscisic acid concentrations in Rosmarinus officinalis plants.-Physiol. Plant. 114: 380–386, 2002.PubMedGoogle Scholar
  128. Mustafina, A., Veselov, S., Valcke, R., Kudoyarova, G.: Contents of abscisic acid and cytokinins in shoots during dehydartion of wheat seedlings.-Biol. Plant. 40: 291–293, 1997/98.Google Scholar
  129. Naqvi, S.S.M.: Plant hormones and stress phenomena.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 383–400. Marcel Dekker, New York-Basel-Hong Kong 1994.Google Scholar
  130. Naqvi, S.S.M.: Plant hormones and stress phenomena.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. Pp. 709–730. Marcel Dekker, New York-Basel 1999.Google Scholar
  131. Naqvi, S.S.M.: Plant/crop hormones under stressful conditions.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Physiology. Pp. 645–660. Marcel Dekker, New York-Basel-Hong Kong 1995.Google Scholar
  132. Ng, C.K.-Y., McAinsh, M.R., Gray, J.E., Hunt, L., Leckie, C.P., Mills, L., Hetherington, A.M.: Calcium-based signalling systems in guard cells.-New Phytol. 151: 109–120, 2001.Google Scholar
  133. Niinemets, Ü., Sõber, A., Kull, O., Hartung, W., Tenhunen, J.D.: Apparent controls on leaf conductance by soil water availability and via light-acclimation of foliage structural and physiological properties in a mixed deciduous, temperate forest.-Int. J. Plant Sci. 160: 707–721,, 1999.Google Scholar
  134. Olivella, C., Vendrell, M., Savé, R.: Abscisic acid and ethylene content in Gerbera jamesonii plants submitted to drought and rewatering.-Biol. Plant. 41: 613–616, 1998.Google Scholar
  135. Pei, Z.-M., Kuchitsu, K., Ward, J.M., Schwarz, M., Schroeder, J.I.: Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants.-Plant Cell 9: 409–423, 1997.PubMedGoogle Scholar
  136. Pemadasa, M.A.: Differential abaxial and adaxial stomatal responses to indole-3–acetic acid in Commelina communis L.-New Phytol. 90: 209–219, 1982a.Google Scholar
  137. Pemadasa, M.A.: Effects of phenylacetic acid on abaxial and adaxial stomatal movements and its interaction with abscisic acid.-New Phytol. 92: 21–30, 1982b.Google Scholar
  138. Pharmawati, M., Billington, T., Gehring, C.A.: Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent.-Cell. mol. Life Sci. 54: 272–276, 1998.PubMedGoogle Scholar
  139. Popova, L.P., Outlaw, W.H., Jr., Aghoram, K., Hite, D.R.C.: Abscisic acid-and intraleaf water-stress signal.-Physiol. Plant. 108: 376–381, 2000.Google Scholar
  140. Pospíšilová, J.: Hardening by abscisic acid of tobacco plantlets grown in vitro.-Biol. Plant. 38: 605–609, 1996.Google Scholar
  141. Pospíšilová, J., Čatský, J., Synková, H., Macháčková, I., Solárová, J.: Gas exchange and in vivo chlorophyll fluorescence in potato and tobacco plantlets in vitro as affected by various concentrations of 6–benzylaminopurine.-Photosynthetica 29: 1–12, 1993.Google Scholar
  142. Pospíšilová, J., Rulcová, J., Vomáčka, L.: Effect of benzyladenine and hydroxybenzyladenosine on gas exchange of bean and sugar beet leaves.-Biol. Plant. 44: 523–528, 2001.Google Scholar
  143. Pospíšilová, J., Šantrůček, J.: Stomatal patchiness.-Biol. Plant. 36: 481–510, 1994.Google Scholar
  144. Pospíšilová, J., Synková, H., Macháčková, I., Čatský, J.: Photosynthesis in transgenic tobacco plants.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 519–522. Kluwer Academic Publishers, Dordrecht-Boston-London 1995.Google Scholar
  145. Pospíšilová, J., Synková, H., Macháčková, I., Čatský, J.: Photosynthesis in different types of transgenic tobacco plants with elevated cytokinin content.-Biol. Plant. 40: 81–89, 1997/98.Google Scholar
  146. Pospíšilová, J., Synková, H., Rulcová, J.: Cytokinins and water stress.-Biol. Plant. 43: 321–328, 2000.Google Scholar
  147. Pospíšilová, J., Wilhelmová, N., Synková, H., Čatský, J., Krebs, D., Tichá, I., Hanáčková, B., Snopek, J.: Acclimation of tobacco plantlets to ex vitro conditions as affected by application of abscisic acid.-J. exp. Bot. 49: 863–869, 1998.Google Scholar
  148. Radin, J.W., Hendrix, D.L.: The apoplastic pool of abscisic acid in cotton leaves in relation to stomatal closure.-Planta 174: 180–186, 1988.Google Scholar
  149. Radin, J.W., Parker, L.L., Guinn, G.: Water relation of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid.-Plant Physiol. 70. 1066–1070, 1982.PubMedGoogle Scholar
  150. Raghavendra, A.S., Bhaskar Reddy, K.: Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate.-Plant Physiol. 83: 732–734, 1987.PubMedGoogle Scholar
  151. Rajasekaran, L.R., Blake, T.J.: New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings.-J. Plant Growth Regul. 18: 175–181, 1999.PubMedGoogle Scholar
  152. Říčánek, M., Vicherková, M.: Stomatal responses to ABA and IAA in isolated epidermal strips of Vicia faba L.-Biol. Plant. 34: 259–265, 1992.Google Scholar
  153. Rock, C.D.: Pathway to abscisic acid-regulated gene expression.-New Phytol. 148: 357–396, 2000.Google Scholar
  154. Roelfsema, M.R.G., Staal, M., Prins, H.B.A.: Blue-light-induced apoplastic acidification of Arabidopsis thaliana guard cells: inhibition by ABA is mediated through protein phosphatases.-Physiol. Plant. 103: 466–474, 1998.Google Scholar
  155. Romano, L.A., Jacob, T., Assmann, S.M.: Increases in cytosolic Ca2+ are not required for abscisic acid-inhibition of inward K+ currents in guard cells of Vicia faba L.-Planta 211: 209–217, 2000.PubMedGoogle Scholar
  156. Rood, S.B., Zanewich, K., Stefura, C., Mahoney, J.M.: Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood.-Tree Physiol. 20: 831–836, 2000.PubMedGoogle Scholar
  157. Rulcová, J., Pospíšilová, J.: Effect of benzylaminopurine on rehydration of bean plants after water stress.-Biol. Plant. 44: 75–81, 2001.Google Scholar
  158. Rulcová, J.: [Effect of Cytokinins on Plant Recovery after Water Stress.]-Thesis. Faculty of Natural Sciences, Charles University, Prague 2000. [In Czech.]Google Scholar
  159. Salleo, S., Nardini, A., Pitt, F., Lo Gullo, M.A.: Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.).-Plant Cell Environ. 23: 71–79, 2000.Google Scholar
  160. Santakumari, M., Fletcher, R.A.: Reversal of triazole-induced stomatal closure by gibberellic acid and cytokinins in Commelina benghalensis.-Physiol. Plant. 71: 95–99, 1987.Google Scholar
  161. Sanz, L.C., Fernández-Maculet, J.C., Gómez, E., Vioque, B., Olías, J.M.: Effect of methyl jasmonate on ethylene biosynthesis and stomatal closure in olive leaves.-Phytochemistry 33: 285–289, 1993.Google Scholar
  162. Sauter, A., Davies, W.J., Hartung, W.: The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot.-J. exp. Bot. 52: 1991–1997, 2001.PubMedGoogle Scholar
  163. Sauter, A., Dietz, K.-J., Hartung, W.: A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling.-Plant Cell Environ. 25: 223–228, 2002.PubMedGoogle Scholar
  164. Sauter, A., Hartung, W.: Radial transport of abscisic acid conjugates in maize roots: its implication for long distance stress signals.-J. exp. Bot. 51: 925–935, 2000.Google Scholar
  165. Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D.: Guard cell signal transduction.-Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 627–658, 2001.PubMedGoogle Scholar
  166. Shashidhar, V.R., Prasad, T.G., Sudharshan, L.: Hormone signals from roots to shoots of sunflower (Helianthus annuus L.). Moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap.-Ann. Bot. 78: 151–155, 1996.Google Scholar
  167. Singh, P., Srivastava, N.K., Mishra, A., Sharma, S.: Influence of etherel and gibberellic acid on carbon metabolism, growth, and essential oil accumulation in spearmint (Mentha spicata).-Photosynthetica 36: 509–517, 1999.Google Scholar
  168. Slovin, J.P., Bandurski, R.S., Cohen, J.D.: Auxin.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 115–140. Elsevier, Amsterdam 1999.Google Scholar
  169. Snaith, P.J., Mansfield, T.A.: Control of the CO2 response of stomata by indol-3ylacetic acid and abscisic acid.-J. exp. Bot. 33: 360–365, 1982.Google Scholar
  170. Snaith, P.J., Mansfield, T.A.: Studies of the inhibition of stomatal opening by naphth-1–ylacetic acid and abscisic acid.-J. exp. Bot. 35: 1410–1418, 1984.Google Scholar
  171. Snaith, P.J., Mansfield, T.A.: Responses of stomata to IAA and fusicoccin at the opposite phases of an entrained rhythm.-J. exp. Bot. 36: 937–944, 1985.Google Scholar
  172. Socias, X., Correia, M.J., Chaves, M., Medrano, H.: The role of abscisic acid and water relations in drought responses of subterranean clover.-J. exp. Bot. 48: 1281–1288, 1997.Google Scholar
  173. Stoll, M., Loveys, B., Dry, P.: Hormonal changes induced by partial rootzone drying of irrigated grapevine.-J. exp. Bot. 51: 1627–1634, 2000.PubMedGoogle Scholar
  174. Synková, H., Pospíšilová, J., Valcke, R.: Photosynthesis in transgenic pssu-ipt tobacco plants as affected by water stress.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. IV. Pp. 561–564. Kluwer Academic Publishers, Dordrecht-Boston-London 1995.Google Scholar
  175. Synková, H., Van Loven, K., Pospíšilová, J., Valcke, R.: Photosynthesis of transgenic Pssu-ipt tobacco.-J. Plant Physiol. 155: 173–182, 1999.Google Scholar
  176. Synková, H., Van Loven, K., Valcke, R.: Increased content of endogenous cytokinins does not delay degradation of photosynthetic apparatus in tobacco.-Photosynthetica 33: 595–608, 1997a.Google Scholar
  177. Synková, H., Wilhelmová, N., Šesták, Z., Pospíšilová, J.: Photosynthesis in transgenic plants with elevated cytokinin contents.-In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 541–552. Marcel Dekker, New York-Basel-Hong Kong 1997b.Google Scholar
  178. Talavera, C.R., Espadas, F.L., Aguilar, M.L., Maust, B.E., Oropeza, C.M., Santamaria, J.M.: The control of leaf water loss by coconut plants cultured in vitro depends on the type of membrane used for ventilation.-J. hort. Sci. Biotechnol. 76: 569–674, 2001.Google Scholar
  179. Tardieu, F., Davies, W.J.: Root-shoot communication and whole-plant regulation of water flux.-In: Smith, J.A.C., Griffiths, H.: Water Deficits. Plant Responses from Cell to Community. Pp. 147–162. Bios Scientific Publishers, Oxford 1993.Google Scholar
  180. Tardieu, F., Davies, W.J.: Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants.-Plant Cell Environ. 16: 341–349, 1993.Google Scholar
  181. Teplova, I., Farkhutdinov, R., Mitrichenko, A., Kudoyarova, G.: Changes in zeatin and ABA content and water relations in wheat seedlings as influenced by elevated temperature.-Biol. Plant. 42(Suppl.): S78, 1999.Google Scholar
  182. Thimann, K.V.: Antagonisms and similarities between cytokinins, abscisic acid and auxin (mini review).-In: Kamínek, M., Mok, D.W.S., Zažimalová, E. (ed.): Physiology and Biochemistry of Cytokinins in Plants. Pp. 395–400. SPB Academic Publishing, The Hague 1992.Google Scholar
  183. Thomas, D.S., Eamus, D.: The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant C i and on stem hydraulic conductance and foliar ABA concentrations.-J. exp. Bot. 50: 243–251, 1999.Google Scholar
  184. Thomas, J.C., McElwain, E.F., Bohnert, H.J.: Convergent induction of osmotic stress-response. Abscisic acid, cytokinin, and the effects of NaCl.-Plant Physiol. 100: 416–423, 1992.PubMedCrossRefGoogle Scholar
  185. Thomas, J.C., Smigocki, A.C., Bohnert, H.J.: Light-induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco.-Plant mol. Biol. 27: 225–235, 1995.PubMedGoogle Scholar
  186. Thompson, A.J., Jackson, A.C., Parker, R.A., Morpeth, D.R., Burbidge, D.R., Taylor, I.A.: Abscisic acis biosynthesis in tomato: egulation of zeaxanthin epoxidase and 9–cis-epoxycarotenoid diogenase mRNAs by light/dark cycles, water stress and abscisic acid.-Plant mol. Biol. 42: 833–845, 2000.PubMedGoogle Scholar
  187. Thompson, D.S., Wilkinson, S., Bacon, M.A., Davies, W.J.: Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit.-Physiol. Plant. 100: 303–313, 1997.Google Scholar
  188. Trejo, C.L., Clephan, A.L., Davies, W.J.: How do stomata read abscisic acid signals?-Plant Physiol. 109: 803–811, 1995.PubMedGoogle Scholar
  189. Tsonev, T.D., Lazova, G.N., Stoinova, Z.G., Popova, L.P.: A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress.-J. Plant Growth Regul. 17: 153–159, 1998.Google Scholar
  190. Vomáčka, L., Pospíšilová, J.: Rehydration of sugar beet plants after water stress: effects of cytokinins.-Biol. Plant. 46: 57–62, 2003.Google Scholar
  191. Wang, J., Letham, D.S., Cornish, E., Stevenson, K.R.: Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter. I. Developmental features of the transgenic plants.-Aust. J. Plant Physiol. 24: 661–672, 1997a.Google Scholar
  192. Wang, J., Letham, D.S., Cornish, E., Wei, K., Hocart, C.H., Michael, M., Stevenson, K.R.: Studies of cytokinin action and metabolism using tobacco plants expressing either the ipt or the GUS gene controlled by a chalcone synthase promoter. II. ipt and GUS gene expression, cytokinin levels and metabolism.-Aust. J. Plant Physiol. 24: 673–683, 1997b.CrossRefGoogle Scholar
  193. Wang, S.Y.: Methyl jasmonate reduces water stress in strawberry.-J. Plant Growth Regul. 18: 127–134, 1999.PubMedGoogle Scholar
  194. Webb, A.A.R., Larman, M.G., Montgomery, L.T., Taylor, J.E., Hetherington, A.M.: The role of calcium in ABA-induced gene expression and stomatal movements.-Plant J. 26: 351–362, 2001.PubMedGoogle Scholar
  195. Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies.-Tree Physiol. 18: 633–644, 1998.PubMedGoogle Scholar
  196. Wilkinson, S., Davies, W.J.: Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast.-Plant Physiol. 113: 559–573, 1997.PubMedGoogle Scholar
  197. Wilkinson, S., Davies, W.J.: ABA-based chemical signalling: the co-ordination of responses to stress in plants.-Plant Cell Environ. 25: 195–210, 2002.PubMedGoogle Scholar
  198. Xu, H.-L., Shida, A., Futatsuya, F., Kumura, A.: Effects of epibrassinolide and abscisic acid on sorghum plants growing under soil-water deficit. II. Physiological basis for drought resistance induced by exogenous epibrassinolide and abscisic acid.-Jap. J. Crop Sci. 63: 676–681, 1994.Google Scholar
  199. Yadav, N., Gupta, V., Yadav, V.K.: Role of benzyladenine and gibberellic acid in alleviating water-stress effect in gram (Cicer arietinum).-Indian J. agr. Sci. 67: 381–387, 1997.Google Scholar
  200. Yang, J.C., Zhang, J.H., Wang, Z.Q., Zhu, Q.S., Wang, W.: Hormonal changes in the grains of rice subjected to water stress during grain filling.-Plant Physiol. 127: 315–323, 2001.PubMedGoogle Scholar
  201. Yokota, T.: Brassinosteroids.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 277–293. Elsevier, Amsterdam 1999.Google Scholar
  202. Yuan, L., Xu, D.Q.: Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean.-Photosynth. Res. 68: 39–47, 2001.PubMedGoogle Scholar
  203. Zažímalová, E., Kamínek, M., Březinová, A., Motyka, V.: Control of cytokinin biosynthesis and metabolism.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 141–160. Elsevier, Amsterdam 1999.Google Scholar
  204. Zdunek, E., Lips, S.H.: Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions.-J. exp. Bot. 52: 1269–1276, 2001.PubMedGoogle Scholar
  205. Zeevaart, J.A.D.: Abscisic acid metabolism and its regulation.-In: Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R. (ed.): Biochemistry and Molecular Biology of Plant Hormones. Pp. 189–207. Elsevier, Amsterdam 1999.Google Scholar
  206. Zhang, D., He, F., Jia, W.: Cell biological mechanism for triggering of ABA accumulation under water stress in Vicia faba leaves.-Sci. China 44: 421–428, 2001a.CrossRefGoogle Scholar
  207. Zhang, D., Yang, H., Jia, W., Huang, C.: Protein phosphorylation is involved in the water stress-induced ABA accumulation in the roots of Malus hupehensis Rehd.-Chin. Sci. Bull. 46: 855–858, 2001b.CrossRefGoogle Scholar
  208. Zhang, J., Jia, W., Zhang, D.-P.: Effect of leaf water status and xylem pH on metabolism of xylem-transported abscisic acid.-Plant Growth Regul. 21: 51–58, 1997a.Google Scholar
  209. Zhang, J., Jia, W., Zhang, D.-P.: Re-export and metabolism of xylem-delivered ABA in attached maize leaves under different transpirational fluxes and xylem ABA concentrations.-J. exp. Bot. 48: 1557–1564, 1997b.Google Scholar
  210. Zhang, J., Zhang, X., Liang, J.: Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment.-New Phytol. 131: 329–336, 1995.Google Scholar
  211. Zhang, S.Q., Outlaw, W.H., Jr.: The guard-cell apoplast as a site of abscisic acid accumulation in Vicia faba L.-Plant Cell Environ. 24: 347–355, 2001a.Google Scholar
  212. Zhang, S.Q., Outlaw, W.H., Jr.: Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure.-Plant Cell Environ. 24: 1045–1054, 2001b.Google Scholar
  213. Zhang, S.Q., Outlaw, W.H., Jr.: Gradual long-term water stress results in abscisic acid accumulation in the guard-cell symplast and guard-cell apoplast of intact Vicia faba L. plants.-J. Plant Growth Regul. 20: 300–307, 2001c.Google Scholar
  214. Zhang, S.Q., Outlaw, W.H., Jr., Aghoram, K.: Relationship between changes in the guard cell abscisic-acid content and other stress-related physiological parameters in intact plants.-J. exp. Bot. 52: 301–308, 2001c.PubMedGoogle Scholar
  215. Zhang, X., Yu, C.M., An, G.Y., Zhou, Y., Shangguan, Z.P., Gao, J.F., Song, C.P.: K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells.-Cell Res. 11: 195–202, 2001d.PubMedGoogle Scholar
  216. Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., Song, C.-P.: Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba.-Plant Physiol. 126: 1438–1448, 2001e.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • J. Pospíšilová
    • 1
  1. 1.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPraha 6Czech Republic

Personalised recommendations