Plant Molecular Biology

, Volume 52, Issue 3, pp 511–526 | Cite as

Mapping quantitative physiological traits in apple (Malus × domestica Borkh.)

  • R. Liebhard
  • M. Kellerhals
  • W. Pfammatter
  • M. Jertmini
  • C. Gessler
Article

Abstract

Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population of the cross between the apple varieties `Fiesta' (syn. `Red Pippin') and `Discovery' has been observed over three years at three different sites in Switzerland and data on growth habit, blooming behaviour, juvenile period and fruit quality has been recorded. QTL analyses were performed, based on a genetic linkage map consisting of 804 molecular markers and covering all 17 apple chromosomes. With the maximum likelihood based interval mapping method, the investigated complex traits could be dissected into a number of QTLs affecting the observed characters. Genomic regions participating in the genetic control of stem diameter, plant height increment, leaf size, blooming time, blooming intensity, juvenile phase length, time of fruit maturity, number of fruit, fruit size and weight, fruit flesh firmness, sugar content and fruit acidity were identified and compared with previously mapped QTLs in apple. Although `Discovery' fruit displayed a higher acid content, both acidity QTLs were attributed to the sweeter parent `Fiesta'. This indicated homozygosity at the acidity loci in `Discovery' preventing their detection in the progeny due to the lack of segregation.

blooming fruit quality growth juvenile period QTL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeppli, A., Gremminger, U., Kellerhals, M., Rapillard, C., Röthlisberger, K. and Rusterholz, P. 1989. Obstsorten, 3rd ed. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland, pp. 88-89.Google Scholar
  2. Aldwinckle, H.S. 1975. Flowering of apple seedlings 16-20 months after germination. Hort. Sci. 10(2): 124-126.Google Scholar
  3. Brown, A.G. and Harvey, D.M. 1971. The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20: 68-80.Google Scholar
  4. Conner, J.P., Brown, S.K. and Weeden, N.F. 1998. Molecularmarker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96: 1027-1035.Google Scholar
  5. Fischer, C. 1994. Shortening the juvenile period in apple breeding. In: H. Schmidt and M. Kellerhals (Eds.) Progress in Temperate Fruit Breeding, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 161-164.Google Scholar
  6. Fischer, M. 1994. The Pillnitz apple rootstock breeding programme results. In: H. Schmidt and M. Kellerhals (Eds.) Progress in Temperate Fruit Breeding, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 161-164.Google Scholar
  7. Haley, C.S., Knott, S.A. and Elsen, J.M. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195-1207.Google Scholar
  8. Hulme, A.C. and Rhodes, M.J.C. 1971 Pome fruits. In: A.C. Hulme (Ed.) The Biochemistry of Fruits and their Products, Academic Press, London, pp. 333-373.Google Scholar
  9. Kellerhals, M., Dolega, E., Dilworth, E., Koller, B. and Gessler, C. 2000. Advances in marker-assisted apple breeding. Acta Hort. 583: 535-540.Google Scholar
  10. Kellerhals, M. and Meyer, M. 1994. Aims of the apple breeding program at Wädenswil. In: H. Schmidt and M. Kellerhals (Eds.) Progress in Temperate Fruit Breeding, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 117-121.Google Scholar
  11. King, G., Lynn, J., Dover, C.J. and Evans, K.M. 2001. Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor. Appl. Genet. 102: 1227-1235.Google Scholar
  12. King, G.J., Maliepaard, C., Lynn, J.R., Alston, F.H., Durel, C.E., Evans, K.M., Griffon, B., Laurens, F., Manganaris, A.G., Schrevens, E., Tartarini, S. and Verhaegh, J. 2000. Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor. Appl. Genet. 100: 1074-1084.Google Scholar
  13. Knott, S.A. and Haley, C.S. 1992. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132: 1211-1222.Google Scholar
  14. Koller, B., Gianfranceschi, L., Seglias, N., McDermott, J. and Gessler, C. 1994. DNA markers linked to the Malus floribunda 821 scab resistance. Plant Mol. Biol. 26: 597-602.Google Scholar
  15. Lander, E.S. and Botstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.Google Scholar
  16. Lawson, D.M., Hemmat, M. and Weeden, N.F. 1995. The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J. Am. Soc. Hort. Sci. 120: 532-537.Google Scholar
  17. Liebhard, R., Koller, B., Gianfranceschi, L., and Gessler, C. in press. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor. Appl. Genet.Google Scholar
  18. Maarse, H. (Ed.) 1991.Volatile Compounds in Food and Beverages. Marcel Dekker, New York, p. 30.Google Scholar
  19. Maliepaard, C., Alston, F.H., Van Arkel, G., Brown, L.M., Chevreau, E., Dunemann, F., Evans, K.M., Gardiner, S., Guilford, P., van Heusden, A.W., Janse, J., Laurens, F., Lynn, J.R., Manganaris, A.G., Den Nijs, A.P.M., Periam, N., Rikkerink, E., Roche, P., Ryder, C., Sansavini, S., Schmidt, H., Tartarini, S., Verhaegh, J.J., Vrielink-Van Ginkel, M. and King, G.J. 1998. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97: 60-73.Google Scholar
  20. Mehlenbacher, S.A. and Voordeckers, A.M. 1991. Relationship of flowering time, rate of seed germination, and time of leaf bud break and usefulness in selecting for late-flowering apples. J. Am. Soc. Hort. Sci. 116: 565-568.Google Scholar
  21. Murawski, H. 1967. Beiträge zur Züchtungsforschung beim Apfel. X. Ergebnisse bei der Züchtung von Apfelsorten mit spätem Laubaustrieb und Blühbeginn. Züchter 37: 134-139.Google Scholar
  22. Nybom, N. 1959. On the inheritance of acidity in cultivated apples. Heriditas 45: 332-350.Google Scholar
  23. Seglias, N. 1997. Genetische Kartierung quantitativer Merkmale beim Apfel. PhD Dissertation 12204, ETH Zürich, Switzerland.Google Scholar
  24. Seglias, N.P. and Gessler, C. 1997. Genetics of apple powdery mildew resistance from Malus zumi (Pl2). IOBC/WPRS Bull. 20 (9): 195-208.Google Scholar
  25. Silbereisen, R., Götz, G. and Hartmann, W. 1996. Obstsorten-Atlas. Eugen Ulmer.Google Scholar
  26. Spotte, R.A., Stang, E.J. and Ferree, D.C. 1976. Effect of overtree misting for bloom delay on incidence of fire blight in apple. Plant Dis. Rep. 60: 329-330.Google Scholar
  27. Tartarini, S., Gianfranceschi, L., Sansavini, S. and Gessler, C. 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed. 118: 183-186.Google Scholar
  28. Tydeman, H.T. 1958. The breeding of late flowering apple varieties. Rep. E. Malling Res. Stn. 1957: 68-73.Google Scholar
  29. van Ooijen, J.W. 1999. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83: 613-624.Google Scholar
  30. van Ooijen, J.W. and Maliepaard, C. 1996. MapQTL version 3.0: software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen, Netherlands.Google Scholar
  31. Verhaegh, J.J., Visser, T. and Kellerhals, M. 1988. juvenile period of apple seedlings as affected by rootstock, bud origin and growth factors. Acta Hort. 224: 133-139.Google Scholar
  32. Visser, T. 1970. The relation between growth, juvenile period and fruiting of apple seedlings and its use to improve breeding efficiency. Euphytica 19: 293-302.Google Scholar
  33. Visser, T. and Verhaegh, J.J. 1978a. Inheritance and selection of some fruit characters of apple. I. Inheritance of low and high acidity. Euphytica 27: 753-760.Google Scholar
  34. Visser, T. and Verhaegh, J.J. 1978b. Inheritance and selection of some fruit characters of apple.II. The relation between leaf and fruit pH as a basis for preselection. Euphytica 27: 761-765.Google Scholar
  35. Visser, T., Schaap, A.A. and de Vries, D.P. 1968. Acidity and sweetness in apple and pear. Euphytica 17: 153-167.Google Scholar
  36. Watkins, R. and Spangelo, L.P.S. 1970. Components of genetic variance for plant survival and vigor in apple trees. Theor. Appl. Genet. 40: 195-203.Google Scholar
  37. Xu, M.L. and Korban, S.S. 2000. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor. Appl. Genet. 101: 844-851.Google Scholar
  38. Young, H., Gilbert, J.M., Murray, S.H. and Ball, R.D. 1995. Causal effects of aroma compounds on Royal Gala apple flavours. J. Sci. Food Agric. 71: 329-336.Google Scholar
  39. Zimmermann, R.H. 1971. Flowering in crabapple seedlings: methods of shortening the juvenile phase. J. Am. Soc. Hort. Sci. 96: 404-411.Google Scholar
  40. Zimmermann, R.H. 1972. Length of juvenile period in some apomictic crab apples. Hort. Sci. 7: 490-491.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • R. Liebhard
    • 1
  • M. Kellerhals
    • 2
  • W. Pfammatter
    • 3
  • M. Jertmini
    • 4
  • C. Gessler
    • 5
  1. 1.Swiss Federal Institute of Technology, Institute of Plant Science/PhytopathologyUniversitätstrasse 2ZurichSwitzerland
  2. 2.Swiss Federal Research Station for Fruit Growing, Horticulture and Viticulture, FAWWädenswilSwitzerland
  3. 3.Swiss Federal Research Station for Plant Production, RAC, Centre Les FougèresContheySwitzerland
  4. 4.Swiss Federal Research Station for Plant Production, RAC, Centro di CadenazzoContoneSwitzerland
  5. 5.Swiss Federal Institute of Technology, Institute of Plant Science/PhytopathologyUniversitätstrasse 2ZurichSwitzerland

Personalised recommendations