Topics in Catalysis

, Volume 23, Issue 1–4, pp 81–98 | Cite as

Quantum Mechanical–Rapid Prototyping Applied to Methane Activation

  • Richard P. Muller
  • Dean M. Philipp
  • William A. GoddardIII

Abstract

The accuracy of quantum mechanics (QM) calculations have improved to the point at which they are now useful in elucidating the detailed mechanisms of industrially important catalytic processes. This, combined with the continued dramatic decreases in the costs of computing (and the concomitant increases in the costs of experiments), makes it feasible to consider the use of QM in discovering new catalysts. We illustrate how to apply quantum mechanics to rapidly prototype potential catalysts, by considering improvements in the Catalytica Pt catalyst for activating methane to form methanol. The strategy is to first determine the detailed chemical steps of a prototype reaction (in this case, (bispyrimidine)PtCl2). Then, we identify critical conditions that must be satisfied for a candidate catalyst to be worth considering further. This allows the vast majority of the candidates to be rapidly eliminated, permitting a systematic coverage of large numbers of ligands, metals, and solvents to be covered rapidly, enabling the discovery of new leads. This Quantum Mechanics-Based Rapid Prototyping (QM-RP) approach is the computational-chemistry analogy of combinatorial chemistry and combinatorial materials science.

density functional theory quantum chemistry homogeneous catalysis methane activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.S. Bates and G.H. Fredrickson, Annu. Rev. Phys. Chem. 41 (1990) 525.Google Scholar
  2. [2]
    B.A. Arnstden, R.G. Bergman, T.A. Mobley and T.H. Peterson, Acc. Chem. Res. 28 (1995) 154.Google Scholar
  3. [3]
    S.E. Bromberg, H. Yang, C.M. Asplund, T. Lian, K.B. McNamara, K.T. Kotz, J.S. Yeston, M. Wilkens, H. Frei, R.G. Bergman and C.B. Harris, Science 278 (1997) 260.Google Scholar
  4. [4]
    J.A. Davies, P.L. Watson, J.L. Liebman and A. Greenberg (eds.), Selective Hydrocarbon Activation (Wiley-VCH, New York, 1990).Google Scholar
  5. [5]
    C. Hall and R.N. Perutz, Chem. Rev. 96 (1996) 3125.PubMedGoogle Scholar
  6. [6]
    C.L. Hill, Activation and Functionalization of Alkanes (Wiley-Interscience, New York, 1989).Google Scholar
  7. [7]
    A. Sen, Acc. Chem. Res. 21 (1988) 421.Google Scholar
  8. [8]
    A.E. Shilov and G.B. Shul'pin, Chem. Rev. 97 (1997) 2879.PubMedGoogle Scholar
  9. [9]
    J. Sommer and J. Bukala, Acc. Chem. Res. 26 (1993) 370.Google Scholar
  10. [10]
    K.M. Walktz and J.F. Hartwig, Science 277 (1997) 211.Google Scholar
  11. [11]
    M. Muthukumar, C.K. Ober and E.L. Thomas, Science 277 (1997) 1225.Google Scholar
  12. [12]
    C.K. Ober and G. Wegner, Adv. Mater. 9 (1997) 17.Google Scholar
  13. [13]
    R.A. Periana, D.J. Taube, E.R. Evitt, D.G. Löffler, P.R. Wentrcek, G. Voss and T. Masuda, Science 259 (1993) 340.Google Scholar
  14. [14]
    R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh and H. Fujii, Science 280 (1998) 560.PubMedGoogle Scholar
  15. [15]
    M. Ringnalda et al., Jaguar v4.0 (Schrodinger, Inc., Portland, OR, 2000).Google Scholar
  16. [16]
    J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).Google Scholar
  17. [17]
    A.D. Becke, J. Chem. Phys. 98 (1993) 5648.Google Scholar
  18. [18]
    A.D. Becke, Phys. Rev. A 38 (1988) 3098.PubMedGoogle Scholar
  19. [19]
    S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58 (1980) 1200.Google Scholar
  20. [20]
    C.T. Lee, W.T. Yang and R.G. Parr, Phys. Rev. B 37 (1988) 785.Google Scholar
  21. [21]
    P.J. Hay and W.R. Wadt, J. Chem. Phys. 82 (1985) 299.Google Scholar
  22. [22]
    D.J. Tannor, B. Marten, R. Murphy, R.A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W.A. Goddard and B. Honig, J. Am. Chem. Soc. 116 (1994) 11875.Google Scholar
  23. [23]
    B. Marten, K. Kim, C. Cortis, R.A. Friesner, R.B. Murphy, M.N. Ringnalda, D. Sitkoff and B. Honig, J. Phys. Chem. 100 (1996) 11775.Google Scholar
  24. [24]
    C.M. Cortis and R.A. Friesner, J. Comput. Chem. 18 (1997) 1570.Google Scholar
  25. [25]
    D.M. Philipp, R.P. Muller, W.A. GoddardIII, J. Storer, M. McAdon and M. Mullins, J. Am. Chem. Soc. 124 (2002) 10198.PubMedGoogle Scholar
  26. [26]
    J.K. Klassen, K.M. Fieher and G.M. Nathanson, J. Phys. Chem. B 101 (1997) 9098.Google Scholar
  27. [27]
    X. Xu, J. Kua, R.A. Periana, and W.A. Goddard, Organo-metallics 22 (2003) 2057.Google Scholar
  28. [28]
    D.R. Lide, CRC Handbook of Chemistry and Physics, 74th edition (CRC Press, Boca Raton, FL, 1993-94).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Richard P. Muller
    • 1
  • Dean M. Philipp
    • 1
  • William A. GoddardIII
    • 1
  1. 1.Materials and Process Simulation Center (139-74)California Institute of TechnologyPasadenaUSA

Personalised recommendations