Topics in Catalysis

, Volume 23, Issue 1–4, pp 5–22 | Cite as

Multifunctionality of Active Centers in (Amm)oxidation Catalysts: From Bi–Mo–O x to Mo–V–Nb–(Te, Sb)–O x

  • Robert K. Grasselli
  • James D. Burrington
  • Douglas J. Buttrey
  • Peter DeSantoJr.
  • Claus G. Lugmair
  • Anthony F. VolpeJr.
  • Thomas Weingand


Catalytic centers in selective (allylic) oxidation and ammoxidation catalysts are multimetallic and multifunctional. In the historically important bismuth molybdates, used for propylene (amm)oxidation, they are composed of (Bi3+)(Mo6+)2 complexes in which the Bi3+ site is associated with the α-H abstraction and the (Mo6+)2 site with the propylene chemisorption and O or NH insertion. An updated reaction mechanism is presented. In the Mo–V–Nb–Te–O x systems, three crystalline phases (orthorhombic Mo7.5V1.5NbTeO29, pseudohexagonal Mo6Te2VO20, and monoclinic TeMo5O16) were identified, with the orthorhombic phase being the most important one for propane (amm)oxidation. Its active centers contain all necessary key catalytic elements (2V5+/Mo6+, 1V4+/Mo5+, 2Mo6+/Mo5+, 2Te4+) for this reaction wherein a V5+ surface site (V5+ = O ↔ 4+V–O) is associated with paraffin activation, a Te4+ site with α-H abstraction once the olefin has formed, and a (Mo6+)2 site with the NH insertion. Four Nb5+ centers, each surrounded by five molybdenum octahedra, stabilize and structurally isolate the catalytically active centers from each other (site isolation), thereby leading to high selectivity of the desired acrylonitrile product. A detailed reaction mechanism of propane ammoxidation to acrylonitrile is proposed. Combinatorial methodology identified the nominal composition Mo0.6V0.187Te0.14Nb0.085O x for maximum acrylonitrile yield from propane, 61.8% (86% conversion, 72% selectivity at 420 °C). We propose that this system, composed of 60% Mo7.5V1.5NbTeO29, 40% Mo6Te2VO20, and trace TeMo5O16, functions with a combination of compositional pinning of the optimum orthorhombic Mo7.5V1.5±xNbyTezO29±δ phase and symbiotic mop-up of olefin intermediates through phase cooperation. Under mild reaction conditions, a single optimum orthorhombic composition might suffice as the catalyst; under demanding conditions this symbiosis is additionally required. Improvements in catalyst performance could be attained by further optimization of the elemental distributions at the active catalytic center of Mo7.5V1.5NbTeO29, by promoter/modifier substitutions, and incorporation of compatible cocatalytic phases (preferably epitaxially matched). High-throughput methods will greatly accelerate the rational catalyst design processes.

multifunctionality active catalytic centers site isolation phase cooperation symbiosis selective oxidation ammoxidation propylene propane acrolein acrylic acid acrylonitrile Bi-molybdates Mo–V–Nb–(Te,Sb)–Ox 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.K. Grasselli, in: Handbook of Heterogeneous Catalysis, Vol. V, eds. G. Ertl, H. Knoezinger and J. Weitkamp (1997) p. 2303.Google Scholar
  2. [2]
    R.K. Grasselli, Proceedings of DGMK Conference (Hamburg, Germany, 2001) p. 147Google Scholar
  3. [3]
    R.K. Grasselli, La Chimica e l'Industria, 83 (2001) 25.Google Scholar
  4. [4]
    R.K. Grasselli, Top. Catal. 21 (2002) 79.Google Scholar
  5. [5]
    R.K. Grasselli, D.D. Suresh and H.F. Hardman, US Patent 4,139,552 (1979).Google Scholar
  6. [6]
    R.K. Grasselli and H.F. Hardman, US Patent 4,505,001 (1985).Google Scholar
  7. [7]
    D.D. Suresh, M.S. Friedrich and M.J. Seely, US Patent 5,212,137 (1993).Google Scholar
  8. [8]
    Y. Sasaki, T. Nakamura, Y. Nakamura, K. Moriya, H. Utsumi and S. Saito, US Patent 4,370,279 (1983).Google Scholar
  9. [9]
    A.T. Guttmann, R.K. Grasselli and J.F. Brazdil, US Patent 4,746,other1 (1988)Google Scholar
  10. [10]
    US Patent 4,788,other7 (1988)Google Scholar
  11. [11]
    US Patent 4,797,381 (1989).Google Scholar
  12. [12]
    M. Hatano and A. Kayo, European Patent 318,295 (1988).Google Scholar
  13. [13]
    T. Ushikubo, K. Oshima, A. Kayo, T. Umezawa, K. Kiyona and I. Sawaki, European Patent 529,853 (1992).Google Scholar
  14. [14]
    H. Hinago, S. Komada, and A.K. Kogyo, US Patent 6,063,728 (2000).Google Scholar
  15. [15]
    R.K. Grasselli, Catal. Today 49 (1999) 141.Google Scholar
  16. [16]
    J.L. Callahan and R.K. Grasselli, AIChE J. 9 (1963) 755.Google Scholar
  17. [17]
    R.K. Grasselli, Top. Catal. 15 (2001) 93.Google Scholar
  18. [18]
    R.K. Grasselli, Appl. Catal. 15 (1985) 127.Google Scholar
  19. [19]
    P. DeSantoJr., D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. VolpeJr., B.H. Togy and T Vogt, Top. Catal.; this issue.Google Scholar
  20. [20]
    M. Egishara, K. Matsuo, S. Kawaga and T. Seiyama, J. Catal. 58 (1979) 409.Google Scholar
  21. [21]
    D.J. Buttrey, D.A. Jefferson and J.M. Thomas, Phil. Mag. A 53 (1986) 897.Google Scholar
  22. [22]
    R.K. Grasselli and J.D. Burrington, Adv. Catal. 30 (1981) 133.Google Scholar
  23. [23]
    J.D. Burrington, C.T. Kartisek and R.K. Grasselli, J. Catal. 81 (1983) 489.Google Scholar
  24. [24]
    Y.H. Jang and W.A. GoddardIII, Top. Catal. 15 (2001) 273.Google Scholar
  25. [25]
    M. Aouine, J.L. Duboise and J.M.M. Millet, Chem. Commun. (2001) 1180.Google Scholar
  26. [26]
    J.M.M. Millet, H. Roussel, A. Pigamo, J.L. Dubois and J.C. Jumas, Appl. Catal. A: Gen. 6021 (2002) 1.Google Scholar
  27. [27]
    K. Oshihara, T. Hisano and W. Ueda, Top. Catal. 15 (2001) 153.Google Scholar
  28. [28]
    A.F. van den Elzen and G.D. Rieck, Acta Crystallogr., Sect. B 29 (1973) 2433.Google Scholar
  29. [29]
    A.W. Sleight, K. Aykan and D.B. Rogers, J. Solid State Chem. 13 (1975) 231.Google Scholar
  30. [30]
    J.F. Brazdil, L.C. Glaeser and R.K. Grasselli, J. Catal. 81 (1983) 142.Google Scholar
  31. [31]
    J.F. Brazdil and R.K. Grasselli, J. Catal. 66 (1980) 66.Google Scholar
  32. [32]
    P.L. Gai, Acta Crystallogr., Sect. B, Struct. Sci. 53 (1997) 346.Google Scholar
  33. [33]
    A.W. Sleight, in: Advanced Materials in Catalysis, eds. J.J. Burton and R.L. Garten (Academic Press, New York, 1977) p. 181.Google Scholar
  34. [34]
    J.F. Brazdil, R.G. Teller, R.K. Grasselli and E. Kostiner, in: ACS Symp. Ser. 279, eds. R.K. Grasselli and J.F. Brazdil (1985) p. 57.Google Scholar
  35. [35]
    P.L. Gai, Top. Catal. 21 (2002) 161.Google Scholar
  36. [36]
    R. Schloegl, Chem.-Ing.-Tech. 74 (2002) 552.Google Scholar
  37. [37]
    G.J. Hutchings, J.A. Lopez-Sanchez, J.K. Bartley, J.M. Webster, A. Burrows, C.J. Kiely, A.F. Carley, C. Rhodes, M. Haevecker, A. Knop-Gericke, R.W. Mayer, R. Schloegl, J.C. Volta and M. Poliakoff, J. Catal. 208 (2002) 197.Google Scholar
  38. [38]
    R.K. Grasselli, in: Surface Properties and Catalysis by Non-Metals, eds. J. Bonelle, B. Delmon, and E. Derouane, (D. Reidel, Dordrecht[AQ18], 1983) p. 273.Google Scholar
  39. [39]
    A. Andersson, S.L.T. Andersson, G. Centi, R.K. Grasselli, M. Sanati and F. Trifiro, in: Proceedings 10th Int. Congr. Catal., eds. L. Guczi, F Solymosi and P. Tetenyi (Akademiai Kiado, Budapest, 1992) A, p. 691.Google Scholar
  40. [40]
    H. Bluhm, M. Haevecker, E. Kleimenov, A. Knop-Gericke, A. Liskowski, R. Schloegl and D. Su, Top. Catal.; this issue.Google Scholar
  41. [41]
    A. Hagemeyer, B. Jandeleit, Y Liu, D.M. Poojary, H.W. Turner, A.F. VolpeJr. and W.H. Weinberg, Appl. Catal. A: Gen. 221 (2001) 23Google Scholar
  42. [42]
    R. Borade, D. Poojary and X. Zhau, US Patent 6,395,other2 (2002)Google Scholar
  43. [43]
    S. Guan, L. van Erden, H. Haushalter, X. Zhou, X. Wang and R. Srinivasen, European Patent 1,001,846 (2002), US Patent 6,149,882 (2002).Google Scholar
  44. [44]
    J. Holmberg, R.K. Grasselli and A. Andersson, Top. Catal.; this issue.Google Scholar
  45. [45]
    P. DeSantoJr., D.J. Buttrey and R.K. Grasselli, ACS Symp. Ser. (2003); in press.Google Scholar
  46. [46]
    T. Ushikubo, K. Kayou and M. Hatano, Stud. Surf. Sci. Catal. 112 (1997) 473.Google Scholar
  47. [47]
    T. Ushikubo, K. Oshima, T. Numazawa, M. Vaarkamp and I. Sawaki, Stud. Surf. Sci. Catal. 121 (1999) 339.Google Scholar
  48. [48]
    T. Ushikubo, Catal. Today 57 (2000) 331.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Robert K. Grasselli
    • 1
    • 2
  • James D. Burrington
    • 3
  • Douglas J. Buttrey
    • 1
  • Peter DeSantoJr.
    • 1
  • Claus G. Lugmair
    • 4
  • Anthony F. VolpeJr.
    • 4
  • Thomas Weingand
    • 2
  1. 1.Departments of Chemical Engineering and Materials Science, Center for Catalytic Science and TechnologyUniversity of DelawareNewark
  2. 2.Institute of Physical ChemistryUniversity of MunichMunichGermany
  3. 3.The Lubrizol CorporationWickliffe
  4. 4.Central ExpresswaySymyx Technologies Inc.Santa Clara

Personalised recommendations