Plant Molecular Biology

, Volume 52, Issue 3, pp 591–603 | Cite as

Cloning, characterization and regulation of a family of phi class glutathione transferases from wheat

  • Ian Cummins
  • David O'Hagan
  • Istvan Jablonkai
  • David J. Cole
  • Alain Hehn
  • Danièle Werck-Reichhart
  • Robert EdwardsEmail author


Six phi (F) class glutathione transferases (GSTs) were cloned from bread wheat (Triticum aestivum L.) treated with the herbicide safener fenchlorazole ethyl and named TaGSTF1–6. Recombinant TaGSTFs were assayed for glutathione conjugating activity towards xenobiotics including herbicides and for glutathione peroxidase (GPOX) activity. TaGSTF1, which resembled ZmGSTF1, the dominant GST in maize (Zea mays), was highly active in conjugating 1-chloro-2,4-dinitrobenezene (CDNB) but had low activities towards chloroacetanilide, diphenyl ether and aryloxphenoxypropionate herbicides. TaGSTF2, TaGSTF3 and TaGSTF4 all resembled the safener-inducible ZmGSTF2, with TaGSTF2 and TaGSTF3 being highly active GPOXs and rapidly detoxifying chloroacetanilides. TaGSTF5 resembled ZmGSTF3, having limited conjugating and GPOX activity. TaGSTF6 contained both ZmGSTF1- and ZmGSTF2-like sequences but was most similar to ZmGSTF1 in detoxifying activity. The expression of TaGSTFs in wheat seedlings was enhanced upon exposure to fenchlorazole ethyl, herbicides or other chemical inducing treatments. TaGSTFs were also enhanced by treatment with the natural products caffeic acid, 7,4-dihydroxyflavone and naringenin. The CDNB-conjugating activity of TaGSTF1, and to a lesser extent TaGSTF6, was highly sensitive to inhibition by flavonoids, particularly the chalcone isoliquiritigenin. The other TaGSTFs were much less sensitive to such inhibition. It was subsequently determined that isoliquiritigenin underwent glutathione conjugation, though this reversible reaction did not require the intervention of any TaGSTF. The potential importance of GSTFs and glutathione conjugation in flavonoid metabolism is discussed.

chalcones flavonoids glutathione transferases herbicides ligandin S-isoliquirtigenin-glutathione Triticum aestivum xenobiotics Zea mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R. and Walbot, V. 1998. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10: 1135-1149.Google Scholar
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lippmann, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403.Google Scholar
  3. Bartling, D., Radzio, R., Steiner, U. and Weiler, E.W. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 216: 579-586.Google Scholar
  4. Berhane, K., Widersten, M., Engström, A., Kozarich, J.W. and Mannervik, B. 1994. Detoxication of base propenals and other Qβ,â-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl.Acad. Sci. USA 91: 1480-1484.Google Scholar
  5. Boersma, M.G., Vervoort, J., Szymusiak, H., Lemanska, K., Tyrakowska, B., Cenas, N., Segura-Aguilar, J. and Rietjens, I.M.C.M. 2000. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide. Chem. Res. Toxicol. 13: 185-191.Google Scholar
  6. Cabello-Hurtado, F., Zimmerlin, A., Rahier, A., Taton, M., DeRose, R., Nedelkina, S., Batard, Y., Durst, F., Pallet, K.E. and Werck-Reichhart, D. 1997. Cloning and functional expression in yeast of a cDNA coding for an obtusifoliol 14a-demethylase (CYP51) in wheat. Biochem. Biophys. Res. Commun. 230: 381-385.Google Scholar
  7. Cummins, I., Cole, D.J. and Edwards, R. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 18: 285-292.Google Scholar
  8. Cummins, I., Cole, D.J. and Edwards, R. 1997. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole ethyl. Pestic. Biochem. Physiol. 59: 35-49.Google Scholar
  9. Davies, J. and Caseley, J.C. 1999. Herbicide safeners: a review. Pestic. Sci. 55: 1043-1058.Google Scholar
  10. Dixon, D., Cole, D.J. and Edwards, R. 1997. Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pestic. Sci. 50: 72-82.Google Scholar
  11. Dixon, D.P., Cole, D.J. and Edwards, R. 1998. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol. Biol. 36: 75-87.Google Scholar
  12. Dixon, D.P., Lapthorne, A. and Edwards, R. 2002. Plant glutathione transferases. Genome Biol. 3: 3004.1-3004.10.Google Scholar
  13. Droog, F.N.J., Hooykaas, P.J.J. and van der Zaal, B.J. 1995. 2,4-Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type-III tobacco glutathione S-transferases. Plant Physiol. 107: 1139-1146.Google Scholar
  14. Edwards, R. and Dixon, D.P. 2000. The role of glutathione transferases in herbicide metabolism. In: A.H. Cobb and R.C. Kirkwood (Eds.) Herbicides and their Mechanisms of Action, Sheffield Academic Press, Sheffield, UK, pp. 39-71.Google Scholar
  15. Edwards, R., Dixon, D.P. and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5: 193-198.Google Scholar
  16. Galati, G., Moridani, M.Y., Chan, T.S. and O'Brien, P.J. 2000. Peroxidative metabolism of apigenin and naringenin versus lutolin and quercetin: glutathione oxidation and conjugation. Free Rad. Biol. Med. 30: 370-382.Google Scholar
  17. Graff, G., Anderson, L.A. and Jaques, L.W. 1990. Preparation and purification of soybean lipoxygenase-derived unsaturated hydroperoxy and hydroxy fatty-acids and determination of molar absorptivities of hydroxy fatty acids. Anal. Biochem. 188: 38-47.Google Scholar
  18. Holt, D.C., Lay, V.J., Clarke, E.D., Dinsmore, A., Jepson, I., Bright, S.W.J. and Greenland, A.J. 1995. Characterization of the safenerinduced glutathione S-transferase isoform II from maize. Planta 196: 295-302.Google Scholar
  19. Irzyk, G.P. and Fuerst, E.P. 1993. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol. 102: 803-810.Google Scholar
  20. Jepson, I., Lay, V.J., Holt, D.C., Bright, S.W.J. and Greenland, A.J. 1994. Cloning and characterization of maize herbicide safenerinduced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol. Biol. 26: 1855-1866.Google Scholar
  21. Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N. and Makris, A.M. 2000. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275: 29207-29216.Google Scholar
  22. Koeppe, M.K., Barefoot, A.C., Cotterman, C.D., Zimmerman, W.T. and Leep, D.C. 1997. Basis of selectivity of the herbicide flupyrsulfuron-methyl in wheat. Pestic. Biochem. Physiol. 59: 105-117.Google Scholar
  23. Loyall, L., Uchida, K., Braun, S., Furuya, M. and Frohnmeyer, H. 2000. Glutathione and a UV light induced glutathione Stransferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12: 1939-1950.Google Scholar
  24. Marrs, K.A. 1996. The functions and regulation of glutathione Stransferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127-158.Google Scholar
  25. Mauch, F. and Dudler, R. 1993. Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol. 102: 1193-1201.Google Scholar
  26. McGonigle, B., Keeler, S.J., Lau, S.-M.C., Koeppe, M.K. and O'Keefe, D.P. 2000. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol. 124: 1105-1120.Google Scholar
  27. Miyamoto, T. and Yamamoto, I. 1994. Glutathione conjugates as the activated form of chalcones for glutathione S-transferase inhibition. J. Pestic. Sci. 19: 53-58.Google Scholar
  28. Mozer, T.J., Tiemeier, D.C. and Jaworski, E.G. 1983. Purification and characterisation of corn glutathione S-transferase. Biochemistry 22: 1068-1072.Google Scholar
  29. Mueller, L.A., Goodman, C.D., Silady, R.A. and Walbot, V. 2000. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 123: 1561-1570.Google Scholar
  30. Neuefeind, T., Huber, R., Reinemer, P., Knäblein, J., Prade, L., Mann, K., and Bieseler, B. 1997.Cloning, sequencing, crystallization and X-ray structure of glutathione S-transferase-III from Zea mays var. mutin: a leading enzyme in detoxification of maize herbicides. J. Mol. Biol. 274: 577-587.Google Scholar
  31. Neuefeind, T., Reinemer, P. and Bieseler, B. 1997. Plant glutathione S-transferases and herbicide detoxification. Biol. Chem. 378: 199-205.Google Scholar
  32. Nishihira, J., Sakai, M., Nishi, S. and Hatanaka, Y. 1995. Identification of the electrophilic substrate-binding site of glutathione S-transferase P by photoaffinity labeling. Eur. J. Biochem. 232: 106-110.Google Scholar
  33. Pascal, S. and Scalla, R. 1999. Purification and characterization of a safener-induced glutathione S-transferase from wheat (Triticum aestivum). Physiol. Plant. 106: 17-27.Google Scholar
  34. Pascal, S., Debrauwer, L., Ferte, M.P., Anglade, P., Rouimi, P. and Scalla, R. 1998. Analysis and characterization of glutathione S-transferase subunits from wheat (Triticum aestivum L.). Plant Sci. 134: 217-226.Google Scholar
  35. Pflugmacher, S., Schröder, P. and Sandermann, H. 2000. Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54: 267-273.Google Scholar
  36. Ploemen, J.H.T.M., van Ommen, B., Bogaards, J.J.P. and van Bladeren, P.J. 1993. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 23: 913-923.Google Scholar
  37. Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M. and Martinoia, E. 1998. From vacuolar GS-X pumps to multispecific ABC transporters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 727-760.Google Scholar
  38. Riechers, D.E., Irzyk, G.P., Jones, S.S. and Fuerst, E.P. 1997a. Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii. Plant Physiol. 114: 1461-1470.Google Scholar
  39. Riechers, D.E., Irzyk, G.P., Fuerst, E.P. and Jones, S.S. 1997b. Nucleotide sequence of a cDNA encoding a safener-induced glutathione S-transferase (accession No. AF004358) from Triticum tauschii. Plant Physiol. 114: 1568.Google Scholar
  40. Roxas, V.P., Smith, R.K., Allen, E.R. and Allen, R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnol. 15: 988-991.Google Scholar
  41. Simons, P. and van der Jagt, D.L. 1981. Purification of glutathione S-transferases by glutathione-affinity chromatography. Meth. Enzymol. 77: 235-237.Google Scholar
  42. Singh, B.R. and Shaw, R.W. 1988. Selective inhibition of oat glutathione S-transferase activity by tetrapyrroles. FEBS Lett. 234: 379-392.Google Scholar
  43. Thom, R., Cummins, I., Dixon, D.P., Edwards, R., Cole, D.J. and Lapthorn, A.J. 2002. Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 41: 7008-7020.Google Scholar
  44. Wagner, U., Edwards, R., Dixon, D.P. and Mauch, F. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49: 515-532.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ian Cummins
    • 1
  • David O'Hagan
    • 2
  • Istvan Jablonkai
    • 3
  • David J. Cole
    • 4
  • Alain Hehn
    • 5
  • Danièle Werck-Reichhart
    • 5
  • Robert Edwards
    • 1
    Email author
  1. 1.Crop Protection Group, School of Biological and Biomedical SciencesUniversity of DurhamDurhamUK
  2. 2.Department of ChemistryUniversity of St. AndrewsSt. Andrews, FifeUK
  3. 3.Chemical Research Centre, Hungarian Academy of SciencesBudapestHungary
  4. 4.Formerly of Aventis Crop ScienceOngar, EssexUK
  5. 5.CNRS-IBMP UPR2357, Department Plant Stress ResponseUniversité Louis PasteurStrasbourgFrance

Personalised recommendations