Surveys in Geophysics

, Volume 24, Issue 3, pp 247–267

The Riga Dynamo Experiment

  • Agris Gailitis
  • Olgerts Lielausis
  • Ernests Platacis
  • Gunter Gerbeth
  • Frank Stefani
Article

Abstract

Cosmic magnetic fields, including the magnetic field of the Earth,are produced by the homogeneous dynamo effect in moving electricallyconducting fluids. We sketch the history of the underlying theoryand comment on previous attempts to realize homogeneous dynamos inthe laboratory. For the main part, we report on two series ofexperiments carried out at the Riga dynamo facility. In November1999 a slowly growing magnetic field eigenmode was observed forthe first time in a liquid metal experiment. In July 2000, themagnetic field saturation regime was studied and a number ofinteresting back-reaction effects were observed. A preliminaryinterpretation of the measured data is also presented.

dynamo magnetic field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altstadt, E.: 1997, Internal report, FZ Rossendorf, Dresden.Google Scholar
  2. Blackett, P. M. S.: 1947, ‘The Magnetic Field of Massive Rotating Bodies’, Nature 159, 658–666.Google Scholar
  3. Bullard, E. C.: 1949, ‘The Magnetic Field within the Earth’, Proc. Roy. Soc. London A197, 433–453.Google Scholar
  4. Bullard, E. C.: 1955: ‘The Stability of a Homopolar Disc Dynamo’, Proc. Camb. Phil. Soc. 51, 744–760.Google Scholar
  5. Busse, F. H.: 2000, ‘Homogeneous Dynamos in Planetary Cores and in the Laboratory’, Annu. Rev. Fluid Mech. 31, 383–408.Google Scholar
  6. Busse, F. H., Grote, E., and Tilgner, A.: 1998, ‘On Convection Driven Dynamos in Rotating Spherical Shells’, Stud. Geophys. Geod. 42, 1–6.Google Scholar
  7. Christen, M.: 2000, personal communication.Google Scholar
  8. Christen, M., Hänel, H., and Will, G.: 1998, ‘Entwicklung der Pumpe für den hydrodynamischen Kreislauf des Rigaer “Zylinderexperimentes”’, in W. H. Faragallah and G. Grabow (eds.), Beiträge zu Fluidenergiemaschienen 4, Faragallah-Verlag und Bildarchiv, Sulzbach/Ts., pp. 111–119.Google Scholar
  9. Christensen, U., Olson, P., and Glatzmaier, G. A.: 1999, ‘Numerical Modeling of the Geodynamo: A Systematic Parameter Study’, Geophys. J. Int. 138, 393–409.Google Scholar
  10. Elsasser, W. M.: 1946: ‘Induction Effects in Terrestrial Magnetism. 1. Theory’, Phys. Rev. 69, 106–116.Google Scholar
  11. Gailitis, A.: 1967, ‘Self-Excitation Condition for a Laboratory Model of a Geomagnetic Dynamo’, Magnetohydrodynamics 3(3), 23–29.Google Scholar
  12. Gailitis, A.: 1989, ‘The Helical MHD Dynamo’, in H. K. Moffatt and A. Tsinober (eds.), Topological Fluid Mechanics, Proc. IUTAMSymposium, Cambridge, U.K., August 13–18, 1989, Cambridge University Press, Cambridge, pp. 147–156.Google Scholar
  13. Gailitis, A.: 1992, ‘Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model’, in M. R. E. Proctor, P. C. Matthews, and A. M. Rucklidge (eds.), Theory of Solar and Planetary Dynamos, Proceedings of NATO ASI, 20.9–2.10, 1992, Cambridge University Press, Cambridge, pp. 91–98.Google Scholar
  14. Gailitis, A.: 1996, ‘Project of a Liquid Sodium MHD Dynamo Experiment’, Magnetohydrodynamics 32, 58–62.Google Scholar
  15. Gailitis, A. and Freibergs, Ya.: 1976, ‘Theory of a Helical MHD Dynamo’, Magnetohydrodynamics 12, 127–129.Google Scholar
  16. Gailitis, A. and Freibergs, Ya.: 1980, ‘Nature of the Instability of a Turbulent Dynamo’, Magnetohydrodynamics 16, 116–121.Google Scholar
  17. Gailitis, A., Karasev, B. G., Kirillov, I. R., Lielausis, O. A., Luzhanskii, S. M., Ogorodnikov, A. P., and Preslitskii, G. V.: 1987, ‘Liquid Metal MHD Dynamo Model Experiment’, Magnetohydrodynamics 23, 349–353.Google Scholar
  18. Gailitis, A., Karasev, B. G., Kirillov, I. R., Lielausis, O. A., and Ogorodnikov, A. P.: 1989, ‘The Helical MHD Dynamo’, in J. Lielpeteris and R. Moreau (eds.), Liquid Metal Magnetohydrodynamics, Kluwer, Dordrecht, pp. 413–419.Google Scholar
  19. Gailitis, A., Lielausis, O., Dement'ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, Th., Stefani, F., Christen, M., Hänel, H., and Will, G.: 2000, ‘Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility’, Phys. Rev. Lett. 84, 4365–4368.Google Scholar
  20. Gailitis, A., Lielausis, O., Platacis, E., Dement'ev, S., Cifersons, A., Gerbeth, G., Gundrum, Th., Stefani, F., Christen, M., and Will, G.: 2001a, ‘Magnetic Field Saturation in the Riga Dynamo Experiment’, Phys. Rev. Lett. 86, 3024–3027.Google Scholar
  21. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., and Stefani, F.: 2001b, ‘On the Results of the Riga Dynamo Experiments’, Magnetohydrodynamics 37(1/2), 71–79.Google Scholar
  22. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., Stefani, F.: 2001c, ‘Riga Dynamo Experiment’, in P. Chossat, D. Armbruster, and I. Oprea (eds.), Dynamo and Dynamics, a Mathematical Challenge, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 26, Kluwer, Dordrecht, pp. 9–16.Google Scholar
  23. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., and Stefani, F.: 2001d, ‘Stirring up a Magnetic Field in the Riga Dynamo Experiment’, Proceedings of the XV-me Congres Francais de Mecanique, Nancy 3–7 Septembre, 2001, CD, article 694, p. 6.Google Scholar
  24. Gailitis, A., Lielausis, O., Platacis, E., Dement'ev, S., Cifersons, A., Gerbeth, G., Gundrum, Th., Stefani, F., Christen, M., and Will, G.: 2002a, ‘Dynamo Experiments at the Riga Sodium Facility’, Magnetohydrodynamics 38(1/2), 5–14.Google Scholar
  25. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., and Stefani, F.: 2002b, ‘On Back-Reaction Effects in the Riga Dynamo Experiment’, Magnetohydrodynamics 38(1/2), 15–26.Google Scholar
  26. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., and Stefani, F.: 2002c, ‘Laboratory Experiments on Hydromagnetic Dynamos’, Rev. Mod. Phys. 74, 973–990.Google Scholar
  27. Gilbert, W.: 1600, De Magnete, translated by P. F. Mottelay, Dover, New York, 1958.Google Scholar
  28. Glatzmaier, G. A. and Roberts, P. H.: 1995, ‘A Three-Dimensional Self-Consistent Simulation of a Geomagnetic Field Reversal’, Nature 377, 203–209.Google Scholar
  29. Krause, F. and Rädler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag, Berlin.Google Scholar
  30. Kuang, W. and Bloxham, J.: 1997, ‘An Earth-Like Numerical Dynamo Model’, Nature 389, 371–374.Google Scholar
  31. Larmor, J.: 1919, ‘How Could a Rotating Body Such as the Sun Become a Magnet?’, Rep. Brit. Assoc. Adv. Sci. 1919, 159–160.Google Scholar
  32. Lehnert, B.: 1952, ‘On the Behaviour of an Electrically Conducting Liquid in a Magnetic Field’, Arkiv för Fysik 5(5), 69–90.Google Scholar
  33. Lehnert, B.: 1957, ‘An Experiment on Axisymmetric Flow of Liquid Sodium in a Magnetic Field’, Arkiv för Fysik 13(10), 109–116.Google Scholar
  34. Lowes, F. J. and Wilkinson, I.: 1963, ‘Geomagnetic Dynamo: A Laboratory Model’, Nature 198, 1158–1160.Google Scholar
  35. Lowes, F. J. and Wilkinson, I.: 1968, ‘Geomagnetic Dynamo: An Improved Laboratory Model’, Nature 219, 717–718.Google Scholar
  36. Merrill, R. T., McElhinny, M. W., and McFadden, P. L.: 1998, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle, Academic Press, San Diago.Google Scholar
  37. Ponomarenko, Yu. B.: 1973, ‘On the Theory of Hydromagnetic Dynamo’, J. Appl. Mech. Tech. Phys. 14, 775–779.Google Scholar
  38. Simonyi, K.: 1990, Kulturgeschichte der Physik, Urania, Leipzig, Jena, Berlin, p. 343.Google Scholar
  39. Steenbeck, M., Krause, F., and Rädler, K.-H.: 1966, ‘A Calculation of the Mean Electromotive Force in an Electrically Conducting Fluid in Turbulent Motion, under the Influence of Coriolis Forces’, Z. Naturforsch. 21a, 369–376.Google Scholar
  40. Steenbeck, M., Kirko, I. M., Gailitis, A., Klawina, A. P., Krause, F., Laumanis, I. I., and Lielausis, O. A.: 1967, ‘An Experimental Verification of the α-Effect’, Monats. Dt. Ak. Wiss. 9, 716–719.Google Scholar
  41. Steenbeck, M.: 1975, Letter to H. Klare, President of the Academy of Sciences of the GDR, p. 2, translation from the German original: “...daß der Aufwand für einen derartigen Versuch beträchtlich sein müsse-ein Kessel mit etwa 10 m3 flüssigem Natrium und einer Umwälzpumpenleistung von nicht weniger als 10 m3/sec.”Google Scholar
  42. Stefani, F., Gerbeth, G., and Gailitis, A.: 1999, ‘Velocity Profile Optimization for the Riga Dynamo Experiment’, in A. Alemany, Ph. Marty, and J. P. Thibault (eds.), Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows, Kluwer, Dordrecht, pp. 31–44.Google Scholar
  43. Stieglitz, R. and Müller, U.: 2001, ‘Experimental Demonstration of a Homogeneous Two-Scale Dynamo’, Phys. Fluids 13, 561–564.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Agris Gailitis
    • 1
  • Olgerts Lielausis
    • 1
  • Ernests Platacis
    • 1
  • Gunter Gerbeth
    • 2
  • Frank Stefani
    • 2
  1. 1.Institute of PhysicsLatvian UniversityRigaLatvia
  2. 2.Forschungszentrum RossendorfDresdenGermany

Personalised recommendations