Journal of Global Optimization

, Volume 27, Issue 2–3, pp 313–332 | Cite as

Routing of Railway Carriages

  • Peter Brucker
  • Johann Hurink
  • Thomas Rolfes


In the context of organizing timetables for railway companies the following railway carriage routing problem occurs. Given a timetable containing rail links with departure and destination times/stations and the composition of the trains, find a routing of railway carriages such that the required carriages are always available when a train departs. The problem is formulated as an integer multi-commodity network flow problem with nonlinear objective function. We will present a local search approach for this NP-hard problem. The approach uses structural properties of the integer multi-commodity network flow formulation of the problem. Computational results for a real world instance are given.

Railway scheduling local search multi-commodity flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993), Network flows; theory, algorithms, and applications, Prentice Hall, New Jersey.Google Scholar
  2. Arlt, Ch. (1994), Die Lösung großer Fixkosten-Netzwerkflußprobleme, Gabler Verlag, Wiesbaden.Google Scholar
  3. Barnhart, C., Hane, C.A. and Vance, P.H. (1996) Integer multicommodity flow problems, Working paper, Massachusetts Institute of Technology, Center for Transportation Studies.Google Scholar
  4. Chvatal, V. Linear Programming, W.H. Freeman and Company, New York/San Francisco.Google Scholar
  5. Crainic, T.G. (2000), Service network design in freight transportation, European Journal of Operational Research 122, 272-288.Google Scholar
  6. Crainic, T.G. and Gendreau, M. (2000), A simplex-based tabu search method for capacitated network design, INFORMS Journal of Computing 12(3), 223-236.Google Scholar
  7. Dowsland, K.A. (1993) Simulated annealing, in: Modern Heuristic Techniques for Combinatorial Problems, edited by C. Reeves, Blackwell Scientific Publications, London, 20-69.Google Scholar
  8. Garcia, B.L., Mahei, P. and LeBlanc, L.J. (1998) Iterative improvement methods for a multiperiod network design problem, European Journal of Operational Research 110, 150-165.Google Scholar
  9. van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated annealing: theory and applications, D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  10. Marin, A. and Sameròn, J. (1996), Tactical design of rail freight networks. Part I: exact and heuristic methods, European Journal of Operational Research 90, 26-44.Google Scholar
  11. Radtke, A. (1995), Dispositionsmodell für den optimierten Betriebsmitteleinsatz der Eisenbahn, Wissenschaftliche Arbeiten Nr. 43, Fachbereich Bauingenieur-und Vermessungswesen; Institut für Verkehrswesen, Eisenbahnbau und Betrieb, Universität Hannover.Google Scholar
  12. Rolfes, T. (1998), Ein lokales Suchverfahren für die Fahrzeugeinsatzplanung im Schienenpersonenverkehr, Diplomarbeit, Fachbereich Mathematik/Informatik, Universität Osnabrück.Google Scholar
  13. Schrijver, A. (1993), Minimum circulation of railway stock, CWI Quarterly 6(3), 205-217.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Peter Brucker
    • 1
  • Johann Hurink
    • 2
  • Thomas Rolfes
    • 1
  1. 1.University of OsnabrückOsnabrückGermany(Email
  2. 2.University of TwenteNetherlands

Personalised recommendations