Journal of Cluster Science

, Volume 14, Issue 2, pp 115–122

MgCl2 Enhances Cluster Formation by Nanoscale Toroidal DNA Condensates

Article

Abstract

Multivalent cations can cause DNA to condense from its extended state in solution into high-density toroid-shaped particles. Developing methods to control the size and size distribution of DNA toroids is an important goal for the development of artificial gene delivery systems. Here we demonstrate that changes in salt conditions, prior to condensation by multivalent cations, can significantly affect DNA condensation. Specifically, millimolar concentrations of MgCl2 are shown to cause the formation of toroid clusters, whereas NaCl at the same ionic strength does not.

gene delivery DNA packaging psi-DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bloomfield (1997). Biopolymers 44, 269–282, and references therein.PubMedGoogle Scholar
  2. 2.
    D. K. Chattoraj, L. C. Gosule, and J. A. Schellman (1978). J. Mol. Biol. 121, 327–337.PubMedGoogle Scholar
  3. 3.
    L. C. Gosule and J. A. Schellman (1976). Nature 259, 333–335.PubMedGoogle Scholar
  4. 4.
    L. C. Gosule and J. A. Schellman (1978). J. Mol. Biol. 121, 311–326.PubMedGoogle Scholar
  5. 5.
    N. V. Hud and K. H. Downing (2001). Proc. Natl. Acad. Sci. USA 98, 14925–14930.PubMedGoogle Scholar
  6. 6.
    G. E. Plum and V. A. Bloomfield (1988). Biopolymers 27, 1045–1051.PubMedGoogle Scholar
  7. 7.
    G. E. Plum, P. G. Arscott, and V. A. Bloomfield (1990). Biopolymers 30, 631–643.PubMedGoogle Scholar
  8. 8.
    J. Widom and R. L. Baldwin (1980). J. Mol. Biol. 144, 431–453.PubMedGoogle Scholar
  9. 9.
    R. W. Wilson and V. A. Bloomfield (1979). Biochemistry 18, 2192–2196.PubMedGoogle Scholar
  10. 10.
    N. V. Hud, K. H. Downing, and R. Balhorn (1995). Proc. Natl. Acad. Sci. USA 92, 3581–3585.PubMedGoogle Scholar
  11. 11.
    M. Allen, J. Lee, C. Lee, and R. Balhorn (1996). Mol. Reprod. Devel. 45, 87–92.PubMedGoogle Scholar
  12. 12.
    M. Cerritelli, N. Cheng, A. Rosenberg, C. McPherson, F. Booy, and A. Steven (1997). Cell 91, 271–280.PubMedGoogle Scholar
  13. 13.
    W. C. Earnshaw, J. King, S. C. Harrison, and F. A. Eiserling (1978). Cell 14, 559–568.PubMedGoogle Scholar
  14. 14.
    N. V. Hud, M. J. Allen, K. H. Downing, J. Lee, and R. Balhorn (1993). Biochem. Biophys. Res. Commun. 193, 1347–1354.PubMedGoogle Scholar
  15. 15.
    N. Hud (1995). Biophys. J. 69, 1355–1362.PubMedGoogle Scholar
  16. 16.
    S. Klimenko, T. Tikchonenko, and V. Andreev (1967). J. Mol. Biol. 23, 523–533.PubMedGoogle Scholar
  17. 17.
    K. E. Richards, R. C. Williams, and R. Calendar (1973). J. Mol. Biol. 190, 255–259.Google Scholar
  18. 18.
    E. Wagner, M. Cotten, R. Foisner, and M. Birnstiel (1991). Proc. Natl. Acad. Sci. USA 88, 4255–4259.PubMedGoogle Scholar
  19. 19.
    A. Rolland (1998). Crit. Rev. Ther. Drug Carrier Syst. 15, 143–198.PubMedGoogle Scholar
  20. 20.
    C. Plank, M. X. Tang, A. R. Wolfe, and F. C. Szoka, Jr. (1999). Hum. Gene Ther. 10, 319–332.PubMedGoogle Scholar
  21. 21.
    R. Mahato, L. Smith, and A. Rolland (1999). Adv. Genet. 41, 95–155.PubMedGoogle Scholar
  22. 22.
    D. Luo and W. Saltzman (2000). Nature Biotech. 18, 33–37.Google Scholar
  23. 23.
    D. Kwoh, C. C. Coffin, C. P. Lollo, J. Jovenal, M. G. Banaszczyk, P. Mullen, A. Phillips, A. Amini, J. Fabrycki, R. Bartholomew, S. W. Brostoff, and D. J. Carlo (1999). Biochim. Biophys. Acta 1444, 171–190.PubMedGoogle Scholar
  24. 24.
    V. Bloomfield (1996). Curr. Opin. Struct. Biol. 6, 334–341.PubMedGoogle Scholar
  25. 25.
    G. S. Manning (1978). Quart. Rev. Biophys. 11, 179–246.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlanta

Personalised recommendations