, Volume 14, Issue 4, pp 241–247 | Cite as

Growth-Substrate Dependent Dechlorination of 1,2-Dichloroethane by a Homoacetogenic Bacterium

  • Stefaan De Wildeman
  • Anke Neumann
  • Gabriele Diekert
  • Willy Verstraete


A rod shaped, gram positive, non sporulating Acetobacterium strain was isolated that dechlorinated 1,2-dichloroethane (1,2-DCA) to ethene at a dechlorination rate of up to 2 nmol Cl- min-1 mg-1 of protein in the exponential growth phase with formate (40 mM) as the substrate. Although with other growth substrates such as pyruvate, lactate, H2/CO2, and ethanol higher biomass productions were obtained,the dechlorination rate with these substrates was more than 10-fold lower compared with formate growing cells. Neither cell extracts nor autoclaved cells of the isolatedAcetobacterium strain mediated the dechlorination of 1,2-DCA at significant rates. The addition of 1,2-DCA to the media did not result in increased cell production. No significant differences in corrinoid concentrations could be measured in cells growing on several growth-substrates. However, these measurements indicated that differences in corrinoid structure might cause the different dechlorination activity. The Acetobacterium sp. strain gradually lost its dechlorination ability during about 10 transfers in pure culture, probably due to undefined nutritional requirements. 16S rDNA analysis of the isolate revealed a 99.7% similarity with Acetobacterium wieringae. However, the type strains of A. wieringae and A. woodii did not dechlorinate 1,2-DCA.

Acetobacterium sp. 1,2-dichloroethane homo-acetogenic reductive dechlorination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assafanid N, Hayes KF & Vogel TM (1994) Reductive dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol — mechanistic study, effect of redox potential and pH. Environ. Sci. Technol. 28: 246–252Google Scholar
  2. Belay N & Daniels L (1987) Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol. 53: 1604–1610Google Scholar
  3. Bouwer EJ & McCarty PL (1983) Transformation of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utitlizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254Google Scholar
  5. Bradley PM (2000) Microbial degradation of chloroethenes in groundwater systems. Hydrogeol. J. 8: 104–111Google Scholar
  6. Braun M & Gottschalk G (1982) Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zentralblatt Fur Bakteriologie Mikrobiologie Und Hygiene 3: 368–376Google Scholar
  7. Christiansen N, Ahring BK, Wohlfarth G & Diekert G (1998) Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. FEBS Lett. 436: 159–162Google Scholar
  8. De Wildeman S, Nollet H, Van Langenhove H, Diekert G & Verstraete W (2002) Reductive biodegradation of 1,2-DCA by methanogenic granular sludge: perspectives for in situ remediation. Wat. Sci. Technol. 45: 43–48Google Scholar
  9. De Wildeman S & Verstraete W (2003) The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl. Microbiol. Biotechnol. (in press)Google Scholar
  10. Diekert G (1990) CO2 reduction to acetate in anaerobic bacteria. FEMS Microbiol. Rev. 87: 391–395Google Scholar
  11. Egli C, Scholtz R, Cook AM & Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 43: 257–261Google Scholar
  12. Glod G, Angst W, Holliger C & Schwarzenbach RP (1997) Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environ. Sci. Technol. 31: 253–260Google Scholar
  13. Holliger C, Schraa G, Stams AJ & Zehnder AJ (1990) Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Biodegradation 1: 253–261Google Scholar
  14. Holliger C, Schraa G, Stupperich E, Stams AJM & Zehnder AJB (1992) Evidence for the involvement of corrinoids and factor F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J. Bacteriol. 174: 4427–4434Google Scholar
  15. Holliger C, Wohlfarth G & Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22: 383–398Google Scholar
  16. Magli A, Wendt M & Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch Microbiol 166: 101–108Google Scholar
  17. Maymo-Gatell X, Chien YT, Gossett JM & Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568–1571Google Scholar
  18. Maymo-Gatell X, Anguish T & Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65: 3108–3113Google Scholar
  19. Messmer M, Wohlfarth G & Diekert G (1993) Methylchloride metabolism of the strictly anaerobic, methylchloride utilizing homoacetogen strain Mc. Arch. Microbiol. 160: 383–387Google Scholar
  20. Miller E, Wohlfarth G & Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch. Microbiol. 168: 513–519Google Scholar
  21. Miller E, Wohlfarth G & Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch. Microbiol. 169: 497–502Google Scholar
  22. Neumann A, Wohlfarth G & Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271: 16515–16519Google Scholar
  23. Neumann A, Siebert A, Trescher T, Reinhardt S, Wohlfarth G & Diekert G (2002) Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor. Arch. Microbiol. 177: 420–426Google Scholar
  24. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E & Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163: 48–56Google Scholar
  25. Stupperich E (1993) Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol. Rev. 12: 349–366Google Scholar
  26. Terzenbach DP & Blaut M (1994) Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol. Lett. 123: 213–218Google Scholar
  27. Traunecker J, Preuss A & Diekert G (1991) Isolation and characterization of a methylchloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421Google Scholar
  28. Van Eekert MHA, Stams AJM, Field JA & Schraa G (1999) Gratuitous dechlorination of chloroethanes by methanogenic granular sludge. Appl. Microbiol. Biotechnol. 51: 46–52Google Scholar
  29. Vogel TM, Criddle CS & McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736Google Scholar
  30. Wild AP, Winkelbauer W & Leisinger T (1995) Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6: 309–318Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Stefaan De Wildeman
    • 1
  • Anke Neumann
    • 2
  • Gabriele Diekert
    • 2
  • Willy Verstraete
    • 1
  1. 1.Laboratory of Microbial Ecology and Technology, Faculty of Agricultural and Applied Biological SciencesGhent UniversityGhentBelgium
  2. 2.Institute for Microbiology, Department of Applied and Ecological MicrobiologyFriedrich-Schiller University JenaJenaGermany

Personalised recommendations