Advertisement

Siberian Mathematical Journal

, Volume 44, Issue 4, pp 605–610 | Cite as

Subquadratic Growth of the Averaged Dehn Function for Free Abelian Groups

  • E. G. Kukina
  • V. A. Roman'kov
Article

Abstract

For finite rank free abelian groups with the standard presentation, the averaged Dehn function is proved to be subquadratic.

averaged Dehn function isoperimetric function free abelian group plane cristallographic group Cayley graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Epstein D. B. A., Cannon J. W., Holt D. F., Levy S. V. F, Paterson M. S., and Thurston W. P., Word Processing in Groups, Jones and Bartlett, Boston (1992).Google Scholar
  2. 2.
    Lysenok I. G., “On some algorithmic properties of hyperbolic groups,” Izv. Akad. Nauk SSSR Ser. Mat., 53, No. 4, 814–832 (1989).Google Scholar
  3. 3.
    Ol 0shanskii A. Yu., “Hyperbolicity of groups with subquadratic isoperimetric inequality,” Internat. J. Algebra Comput., 1, 281–290 (1991).Google Scholar
  4. 4.
    Bouditch B., “A short proof that a subquadratic isoperimetric inequality implies a linear one,” Michigan J. Math., 42, 103–107 (1995).Google Scholar
  5. 5.
    Papasoglou P., “On the subquadratic isoperimetric inequality,” in: Geometric Group Theory, Jones and Bartlett, Boston, 1995, pp. 149–158.Google Scholar
  6. 6.
    Gromov M., “Asymptotic invariants of infinite groups,” in: Geometric Group Theory, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. (LMS Lecture Notes; 182.)Google Scholar
  7. 7.
    Lamperti J. W., Probability [Russian translation], Nauka, Moscow (1973).Google Scholar
  8. 8.
    Feller W., An Introduction to Probability Theory and Its Applications. Vol. 1 [Russian translation], Mir, Moscow (1984).Google Scholar
  9. 9.
    Belenkova Zh. T. and Roman' kov V. A., “Regular Cayley graphs,” submitted to VINITI, 1997, No. 802-B97.Google Scholar
  10. 10.
    Coxeter H. S. M. and Moser W. O. J., Generators and Relations for Discrete Groups [Russian translation], Nauka, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • E. G. Kukina
    • 1
  • V. A. Roman'kov
    • 1
  1. 1.Omsk State UniversityRussia

Personalised recommendations