Heart Failure Reviews

, Volume 8, Issue 3, pp 237–245 | Cite as

Autologous Stem Cells for Functional Myocardial Repair

  • Yitzhack Schwartz
  • Ran KornowskiEmail author


Recent experimental studies based on innovative hypothesis utilizing cell therapy for the damaged myocardium are recently becoming increasingly promising. The naturally occurring myocardial reparative process is apparently complex and relatively inefficient. It consists of up-regulation of progenitor cell release from the bone marrow after myocardial infarction, homing of these cells to the injured tissue, and differentiation of these progenitor cells into vascular cells and cardiomyocytes within the infarcted tissue. Accordingly, there are two main strategies to regenerate myocardium with autologous stem cells: (1) Extracting stem cells from the bone marrow and injecting these cells into the damaged area, (2) Increasing the efficiency of the naturally occurring reparative process by increasing the mobilization of bone marrow–derived stem cells after myocardial infarction.

This review summarizes the growing field of autologous stem cell utilization over the past decade and outlines scientific and clinical hurdles that need to be overcome before this therapy can fully reach its clinical potential.

stem cells congestive heart failure ischemic heart disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler CP, Friedburg H, Herget GW, et al. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch 1996;429:159-164.PubMedGoogle Scholar
  2. 2.
    Li F, Wang X, Bunger PC, et al. Formation of binucleated cardiac myocytes in rat heart: I. role of actin-myosin contractile ring. J Mol Cell Cardiol 1997;29:1541-1551.PubMedGoogle Scholar
  3. 3.
    Olivetti G, Cigola E, Maestri R, et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 1996;28:1463-1477.PubMedGoogle Scholar
  4. 4.
    Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 1998;95:8801-8805.PubMedGoogle Scholar
  5. 5.
    Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Am Heart Assoc 1998;83:15-26.Google Scholar
  6. 6.
    Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-1757.PubMedGoogle Scholar
  7. 7.
    Pasumarthi KBS, Nakajima H, Nakajima HO, et al. Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified TSC2 transgene. Circ Res 2000;86:1069-1077.PubMedGoogle Scholar
  8. 8.
    Rosenthal N. High hopes for the heart. N Engl J Med 2001;344:1785-1787.PubMedGoogle Scholar
  9. 9.
    Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease? Circulation 2000;101:e182- 187.PubMedGoogle Scholar
  10. 10.
    Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5-15.PubMedGoogle Scholar
  11. 11.
    Bianchi DW. Current knowledge about fetal blood cells in the maternal circulation. J Perinat Med 1998;26:175-185.PubMedGoogle Scholar
  12. 12.
    Nelson JL. Microchimerism: expanding new horizon in human health or incidental remnant of pregnancy? Lancet 2001;358:2011-2012.PubMedGoogle Scholar
  13. 13.
    Reiss K, Cheng W, Ferber A, et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci USA 1996;93:8630-8635.PubMedGoogle Scholar
  14. 14.
    Poolman RA, Brooks G. Expression and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J Mol Cell Cardiol 1998;30:2121-2135.PubMedGoogle Scholar
  15. 15.
    Pasumarthi KBS, Nakajima H, Nakajima HO, et al. Enhanced cardiomyocyte DNA synthesis during myocardial hypertrophy in mice expressing a modified TSC2 transgene. Circ Res 2000;86:1069-1077.PubMedGoogle Scholar
  16. 16.
    Liao HS, Kang PM, Nagashima H, et al. Cardiacspecific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res 2001;88:443-450.PubMedGoogle Scholar
  17. 17.
    Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 2001;98:10308-10313.PubMedGoogle Scholar
  18. 18.
    Leferovich JM, Bedelbaeva K, Samulewicz S, et al. Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA 2001;98:9830-9835.PubMedGoogle Scholar
  19. 19.
    Markham DW, Rybkin I, Bassel-Duby R, et al. Conditional expression of SV40 T antigen in mouse cardiomyocytes facilitates an inducible switch from proliferation to differentiation. Circulation 2001;104:323.Google Scholar
  20. 20.
    Bittner RE, Schofer C, Weipoltshammer K, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 1999;199:391-396.PubMedGoogle Scholar
  21. 21.
    Goodell MA, Jackson KA, Majka SM, et al. Stem cell plasticity in muscle and bone marrow. Ann NY Acad Sci 2001;938:208-218;discussion 218-220.PubMedGoogle Scholar
  22. 22.
    Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402.PubMedGoogle Scholar
  23. 23.
    Tomita S, Li R-K, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100:II247-256.PubMedGoogle Scholar
  24. 24.
    Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701- 705.PubMedGoogle Scholar
  25. 25.
    Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98.PubMedGoogle Scholar
  26. 26.
    Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120:999-1005.PubMedGoogle Scholar
  27. 27.
    Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrowderived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med 2001;7:430-636.PubMedGoogle Scholar
  28. 28.
    Nishikawa SI. A complex linkage in the development pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 2001;13:673-678.PubMedGoogle Scholar
  29. 29.
    Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 2001;938:231-233.PubMedGoogle Scholar
  30. 30.
    Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands and cytokines. Circulation 2001;104:1046-1052.PubMedGoogle Scholar
  31. 31.
    Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001;103:2776-2779.PubMedGoogle Scholar
  32. 32.
    Takahashi T, Kalka C, Masuda H, et al. Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434-438.PubMedGoogle Scholar
  33. 33.
    Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999;18:3964-3972.PubMedGoogle Scholar
  34. 34.
    Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001;108:391- 397.PubMedGoogle Scholar
  35. 35.
    Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001;103:2885-2890.PubMedGoogle Scholar
  36. 36.
    Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10344-10349.PubMedGoogle Scholar
  37. 37.
    Litt MR, Jeremy RW, Weisman HF, et al. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence fo neutrophilmediated reperfusion injury. Circulation 1989;80:1816- 1827.PubMedGoogle Scholar
  38. 38.
    Penn MS, Askari A, Brennan ML, et al. Myeloperoxidase plays a central role in ventricular remodeling following acute myocardial infarction. Free Radic Biol Med 2001;31:S53.Google Scholar
  39. 39.
    Caparelli DJ, Cattaneo SM, Shake JG, et al. Cellular cardiomyoplasty with allogenic mesenchymal stem cells results in improved cardiac performance in a swine model of myocardial infarction. Circulation 2001;104:II-599.Google Scholar
  40. 40.
    Hagerty DT, Evavold BD, Allen PM. Regulation of the costimulator B7, not class II major histocompatibility complex, restricts the ability of murine kidney tubule cells to stimulate CD4+ T cells. J Clin Invest 1994;93: 1208-1215.PubMedGoogle Scholar
  41. 41.
    Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726.PubMedGoogle Scholar
  42. 42.
    Tateishi-Yuyama E, Matsubara H, Murohara T, Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet 2002;360:427- 435.PubMedGoogle Scholar
  43. 43.
    Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106: 1913-1918.PubMedGoogle Scholar
  44. 44.
    Zhang YM, Hartzell C, Narlow M, et al. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 2002;106:1294-1299.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Cardiology DivisionRambam Medical CenterHaifa
  2. 2.Cardiology DepartmentRabin Medical CenterPetach-TikvaIsrael

Personalised recommendations