Conservation Genetics

, Volume 4, Issue 4, pp 525–532

Last lynxes in Portugal? Molecular approaches in a pre-extinction scenario

Article

Abstract

The Iberian lynx is the most threatened felidin the world and has suffered a declinethroughout its range. Effective monitoring ofthe species' presence is essential. Fieldwork inpreviously identified areas of lynx occurrencein Portugal has resulted in the collection of104 possible lynx scats. Recently, there hasbeen little or no evidence of lynx presence andscats could be confused with others from moreabundant carnivores such as wildcat, fox anddog. In order to confirm or not exclude thepresence of the species, identification ofscats was performed through the amplificationof lynx-specific mitochondrial DNA sequences.Two samples collected in Malcata NaturalReserve in 1997 were identified as lynx. Thisis the most recent and reliable proof of lynxpresence in Portugal*. Given the territorialbehavior of lynx, stable resident populationswould have produced a higher proportion ofpositively identified scats. Local extinctionsmight have taken place, and this genetic datasupports a suspected national pre-extinctionscenario for the species. Genetic analysisusing a non-invasive approach has proved to bean informative part of the lynx monitoringprogram. Technical problems faced and overcomeare also presented.

carnivore monitoring extinction faecal DNA Iberian lynx non-invasive sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albaugh GP, Iyengar V, Lohan A, Malayeri M, Bala S, Nair PP (1992) Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. International Journal of Cancer, 52(3), 347-350.Google Scholar
  2. Baeta Neves CM (1967) Sobre a existência e extinção do urso em Portugal. Gazeta das Aldeias, n° 2589, 282-287.Google Scholar
  3. Bessa-Gomes C, Fernandes M, Abreu P, Castro L, Ceia H, Pinto B, Pires AE (2002) Le lynx pardelle (Lynx pardinus) au Portugal: diverses approches dans un scénario de pré-extinction (eds. Chapron G, Moutou), pp. 128-136. L'átude et la conservation des carnivores. Societá Française pour l'Etude et la Protection des mammifáres, Paris, 167 pp.Google Scholar
  4. Blanco JC (1998) Mamíferos de Espanha. vol. I. Editorial Planeta, SA. Barcelona. 457 pp.Google Scholar
  5. Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-VAN Dillen PME, Noordaa J van der (1990) Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology, 28(3), 495-503.Google Scholar
  6. Brown RW, Lawrence MJ, Pope J (1992) Animals. Tracks, Trails &; Signs. Hamlyn Guide. The Hamlyn Publishing Group Limited, 320 pp.Google Scholar
  7. Castro L, Fernandes M, Abreu P, Ceia H (1998) Preliminary results of some studies on the Iberian lynx in Portugal. Euro-American Mammal Congress. Santiago de Compostela, p. 281.Google Scholar
  8. Caughley G, Gunn A (1996) Conservation Biology in Theory and Practice. Blackwell Science, USA.Google Scholar
  9. Ceia H, Castro L, Fernandes M, Abreu P (1998) Past and present situation of the Iberian lynx in Portugal. Euro-American Mammal Congress. Santiago de Compostela, pp. 281-282.Google Scholar
  10. Constable JJ, Packer C, Collins DA, Pusey AE (1995) Nuclear DNA from primate dung. Nature, 373, 393.Google Scholar
  11. Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. Journal of Zoology (London), 257, 141-143.Google Scholar
  12. Delibes M, Rodríguez A, Ferreras P (2000) Action Plan for Conservation of the IberianLynx in Europe (Lynx pardinus). Convention on the Conservation of European Wildlife and Natural Habitats. Nature and Environment, n°111. Council of Europe Publishing, 44 pp.Google Scholar
  13. Farrell LE (2000) Molecular scatology as an aid to curtail livestock predation by puma and jaguar. Proceedings and Agenda for Defenders of Wildlife's Carnivores 2000, p. 84.Google Scholar
  14. Ferreras P, Beltran JF, Aldama JJ, Delibes M (1997) Spatial organization and land tenure system of the endangered Iberian lynx (Lynx pardinus). Journal of Zoology (London), 243, 163-189.Google Scholar
  15. Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildlife Society Bulletin, 25(4), 835-839.Google Scholar
  16. Frantzen MAJ, Silk JB, Fergunson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7, 1423-1428.Google Scholar
  17. Gerloff U, SchlÖtterer C, Rassmann K, Rambold I, Hohmann G, Fruth B, Tautz D (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Molecular Ecology, 4, 515-518.Google Scholar
  18. Guzmán JN, García FJ, Garrote G, Pérez de Ayala R, Llamas CI (2002) Iberian lynx (Lynx pardinus) distribution and current conservation status in Spain. 2000-2002. International Seminar on the Iberian Lynx. Andújar, Jaén, 29-31 October 2002.Google Scholar
  19. Hansen MM, Jacobsen L (1999) Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. Journal of Zoology, London, 247, 177-181.Google Scholar
  20. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nature Reviews Genetics, 2, 353-359.Google Scholar
  21. HÖss M, Kohn M, Pääbo S, Knauer F, SchrÖder W (1992) Excrement analysis by PCR. Nature, 359, 199.Google Scholar
  22. IUCN (1998) Guidelines for Re-introductions. Prepared by the IUCN/ SSC Re-introduction Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK, 10 pp.Google Scholar
  23. IUCN (2002) 2002 IUCN Red List of Threatened Species. Downloaded on 04 February 2003.Google Scholar
  24. Janczewski DN, Modi WS, Stephens JC, O'Brien SJ (1995) Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Molecular Ecology and Evolution, 12, 690-707.Google Scholar
  25. Johnson WE, Culver M, Iriarte JA, Eizirik E, Seymour KL (1998) Tracking the evolution of the elusive andean mountain cat (Oreailurus jacobita) from mithocondrial DNA. The Journal of Heredity, 89(3), 227-232.Google Scholar
  26. Kloor K (1999) Lynx and biologist try to recover after disastrous start. Science, 285, 320-321.Google Scholar
  27. Knick ST (1990) Ecology of bobcats relative to exploitation and a prey decline in Southeastern Idaho. Wildlife Monographs, 108, 1-42.Google Scholar
  28. Kohn MH, Wayne RK (1997) Facts from faeces revisited. Trends in Ecology and Evolution, 12(6), 223-227.Google Scholar
  29. Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proceedings of the Royal Society of London, 266, 657-663.Google Scholar
  30. Monnier Ph, Cliquet F, Aubert M, Bretagne S (1996) Improvement of a polymerase chain reaction assay for the detection of Echinococcus multilocularis DNA in faecal samples of foxes. Veterinary Parasitology, 67, 185-195.Google Scholar
  31. Nowel K, Jackson P (1996) Wild Cats. Status Survey and Conservation Action (eds. Nowell K, Jackson P). Switzerland.Google Scholar
  32. Palomares F, Ferreras P, Delibes M (1996) Spatial relationship between Iberian lynx and other carnivores in an area of SW Spain. Journal of Applied Ecology, 33(1), 5-13.Google Scholar
  33. Palomares F, Godoy JA, Piriz A, O'Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian Lynx. Molecular Ecology, 11(10), 2171-2182.Google Scholar
  34. Queney G, Ferrand N, Marchandeau S, Azevedo M, Mougel F, Branco M, Monnerot M (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe epizootic. Molecular Ecology, 9, 1253-1264.Google Scholar
  35. Reed FZ, Tollit DJ, Thompson PM, Amos W (1997) Molecularscatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Molecular Ecology, 6, 225-234.Google Scholar
  36. Robinson IH, Delibes M (1988) The distribution of faeces by the Spanish lynx (Felis pardina). Journal of Zoology London, 216, 577-582.Google Scholar
  37. Rodríguez A, Delibes M (1992) Current range and status of the Iberian lynx Felis pardina Temminck 1824 in Spain. Biological Conservation, 61, 189-196.Google Scholar
  38. Sarmento P, Cruz J (2000) Recuperação do habitat e presas de Lynx pardinus na serra da Malcata. B4-3200/99/006423 LIFE report.Google Scholar
  39. Taberlet P, Bouvet J (1994) Mitochondrial DNA polymorphism, phylogeography and conservation genetics of the brown bear Ursus arctos in Europe. Proceedings of the Royal Society of London B, 225, 195-200.Google Scholar
  40. Waits LP, Kendall K, Murphy M, Roon D, Adams J (2000) Noninvasive genetic sampling: promise and pitfalls. Proceedings and Agenda for Defenders of wildlife's Carnivores 2000, p. 85.Google Scholar
  41. Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain R (1997) Techniques for application of faecal DNA methods to field studies of ursids. Molecular Ecology, 6, 1091-1097.Google Scholar
  42. Wasser SK, Stenhouse G, Munro R, Hunt K, Davenport B, Parker M (2000) Non-invasively estimating the distribution and degree of stress in grizzly and black bears. Proceedings and Agenda for Defenders of Wildlife's Carnivores 2000, p. 86.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Estrada do Paço ao Lumiar, 22, Edifício F, DB/UTPAMInstituto Nacional de Engenharia e Tecnologia IndustrialLisboaPortugal
  2. 2.Instituto da Conservacao da NaturezaLisboaPortugal

Personalised recommendations