Journal of Radioanalytical and Nuclear Chemistry

, Volume 257, Issue 2, pp 361–366 | Cite as

Application of NAA standardization methods using a low power research reactor

  • B. J. B. Nyarko
  • E. H. K. Akaho
  • Y. Serfor-Armah


Two widely used neutron activation analysis (NAA) standardization methods (relative and k0) have been validated at the Ghana Research Reactor-1 (GHARR-1) Centre using environmental and biological standard reference materials (SRMs). The samples were IAEA Soil-7 as an environmental sample, and NIST Orchard Leaves 1571 as a biological sample. The qualitative and quantitative analyses were done using a high resolution Canberra N-type high purity germanium (HPGe) detector. The accuracy and precision were evaluated for the elements analysed. The concentrations of most of the elements were found to be within 10% of the certified values. Precision was calculated from six replicate measurements and was found to be within 15%.


High Resolution Quantitative Analysis Standardization Method Reference Material High Purity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Luten, A. Das, C. L. De Ligny, J. Radioanal. Chem., 35 (1977) 147.Google Scholar
  2. 2.
    G. H. Morrison, N. H. Potter, Anal. Chem., 44 (1972) 839.Google Scholar
  3. 3.
    Ting-Pang Cheng, J. S. Morris, S. R. Koirtyohann, V. L. Spate, C. K. Basket, Nucl. Instr. Meth., A353 (1994) 457.Google Scholar
  4. 4.
    M. V. Frontasyeva, E. Steinnes, Analyst, 120 (1995) 1437.Google Scholar
  5. 5.
    A. M. Davis, T. Tanaka, L. Grossman, T. Lee, G. J. Wasserburg, Geochim. Cosmochim. Acta, 46 (1982) 1627.Google Scholar
  6. 6.
    S. F. Stone, R. Zeisler, B. J. Koster, Trans. Am. Nucl. Soc., 56 (1988) 228.Google Scholar
  7. 7.
    Y. Muramatsu, E. Cortes Toro, R. M. Parr, J. Radioanal. Nucl. Chem., 133 (1989) 249.Google Scholar
  8. 8.
    L. Moens, R. Dams, J. Radioanal. Nucl. Chem., 192 (1995) 29.Google Scholar
  9. 9.
    B. J. B. Nyarko, M. Phil, Thesis, University of Ghana, 1999.Google Scholar
  10. 10.
    F. De Corte, J. Radioanal. Nucl. Chem., 160 (1992) 63.Google Scholar
  11. 11.
    F. De Corte, A. Simonits, J. Radioanal. Nucl. Chem., 133 (1975) 3.Google Scholar
  12. 12.
    G. Kennedy, J. St-Pierre, K. Wang, Y. Zhang, J. Preston, C. Grant, M. Vutchkov, J. Radioanal. Nucl. Chem., 245 (2000) 167.Google Scholar
  13. 13.
    E. H. K. Akaho, B. J. B. Nyarko, Y. Serfor-Armah, S. Osae, S. Anim-Sampong, B. T. Maakuu, K. Ahmad, J. Appl. Sci. Techn. (submitted).Google Scholar
  14. 14.
    E. K. Osae, B. J. B. Nyarko, Y. Serfor-Armah, E. K. Darko, J. Radioanal. Nucl. Chem., 242 (1999) 617.Google Scholar
  15. 15.
    Practical Aspect of Operating a Neutron Activation Analysis Laboratory, IAEA-TECDOC-564, 1990, p. 17.Google Scholar
  16. 16.
    L. Meons, F. De Corte, A. De Wispelaere, J. Hoste, A. Simonits, A. Elek, E. SzabÓ, J. Radioanal. Nucl. Chem., 82 (1984) 385.Google Scholar
  17. 17.
    F. De Corte, A. Simonits, J. Radioanal. Nucl. Chem., 133 (1989) 43.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • B. J. B. Nyarko
    • 1
  • E. H. K. Akaho
    • 2
  • Y. Serfor-Armah
    • 3
  1. 1.Department of Physics National Nuclear Research Institute, G.A.E.C.National Nuclear Research InstituteLegon-AccraGhana
  2. 2.Department of Nuclear EngineeringNational Nuclear Research Institute, G.A.E.C.Legon-AccraGhana
  3. 3.Department of ChemistryNational Nuclear Research Institute, G.A.E.C.Legon-AccraGhana

Personalised recommendations