Advertisement

Combustion, Explosion and Shock Waves

, Volume 39, Issue 4, pp 382–410 | Cite as

Gas Detonation and its Application in Engineering and Technologies (Review)

  • Yu. A. Nikolaev
  • A. A. Vasil'ev
  • B. Yu. Ul'yanitskii
Article

Abstract

The most relevant aspects of advanced experimental investigations of gas detonation and its mathematical simulation are presented. Examples of the engineering use of gas detonation are given.

initiation deflagration-to-detonation transition detonation spraying utilization of tires detonator detonation engine pulsed cleaning removal of rough edges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. A. Bauer, E. K. Dabora, and N. Manson, “Chronology of early research on detonation wave,” in: A. L. Kuhl et al. (eds.), Progress in Astronautics and Aeronautics, Vol. 133: Dynamics of Detonations and Explosions: Detonations, AIAA, Washington (1991), pp. 3–18.Google Scholar
  2. 2.
    N. Manson and E. K. Dabora, “Chronology of research on detonation waves: 1920-1950,” in: A. L. Kuhl et al. (eds.), Progress in Astronautics and Aeronautics, Vol. 153: Dynamics Aspects of Detonation, AIAA, Washington (1993), pp. 3–42.Google Scholar
  3. 3.
    B. E. Gelfand, S. M. Frolov, and M. A. Nettleton, “Gaseous detonations — a selective review,” Prog. Ener. Combust. Sci., 17, 327–371 (1991).Google Scholar
  4. 4.
    A. A. Vasil'ev, V. V. Mitrofanov, and M. E. Topchiyan, “Detonation waves in gases,” Combust. Expl. Shock Waves, 23, No. 5, 605–623 (1987).Google Scholar
  5. 5.
    B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation-Front Structure in gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).Google Scholar
  6. 6.
    A. N. Dremin, S. D. Savrov, V. A. Trofimov, and K. K. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).Google Scholar
  7. 7.
    D. V. Voronin and S. A. Zhdan, “Unidimensional instability of detonation waves in sprays,” Combust. Expl. Shock Waves, 22, No. 4, 473–478 (1986).Google Scholar
  8. 8.
    Ya. B. Zel'dovich and A. S. Kompaneets, Detonation Theory [in Russian], Gostekhizdat, Moscow (1955).Google Scholar
  9. 9.
    Yu. A. Nikolaev and M. E. Topchiyan, “Analysis of equilibrium ows in detonation waves in gases,” Combust. Expl. Shock Waves, 13, No. 3, 327–337 (1977).Google Scholar
  10. 10.
    V. A. Levin and V. V. Markov, “Initiation of detonation by concentrated release of energy,” Combust. Expl. Shock Waves, 11, No. 4, 529–536 (1975).Google Scholar
  11. 11.
    E. S. Shchetinkov, Physics of Combustion in Gases [in Russian], Nauka, Moscow (1965).Google Scholar
  12. 12.
    Yu. A. Nikolaev, “A generalized model of the kinetics of chemical reactions in hydrogen-oxygen gas mixtures,” Combust. Expl. Shock Waves, 30, No. 1, 65–71 (1994).Google Scholar
  13. 13.
    V. V. Azatyan, D. I. Baklanov, L. G. Gvozdeva, et al., “Inhibition of developed detonation in hydrogen-air mixtures,” Dokl. Ross. Akad. Nauk, 376, No. 1, 55–58 (2001).Google Scholar
  14. 14.
    Yu. A. Nikolaev, “Approximate modeling, a kinetic model, and a caloric equation of state for chemically reacting gas mixtures at high temperatures,” Combust. Expl. Shock Waves, 42, No. 1, 4–12 (2001).Google Scholar
  15. 15.
    Yu. A. Nikolaev and P. A. Fomin, “Analysis of equilibrium ows of chemically reacting gases,” Combust. Expl. Shock Waves, 18, No. 1, 53–58 (1982).Google Scholar
  16. 16.
    P. A. Fomin and A. V. Trotsyuk, “An approximate calculation of the isentrope of a gas in chemical equilibrium,” Combust. Expl. Shock Waves, 31, No. 4, 455–458 (1995).Google Scholar
  17. 17.
    Yu. A. Nikolaev, “Propagation of plane supercompressed detonation waves in gases,” Combust. Expl. Shock Waves, 31, No. 5, 593–604 (1995).Google Scholar
  18. 18.
    W. C. Gardiner (Jr.) (ed.), Combustion Chemistry, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo (1984).Google Scholar
  19. 19.
    Yu. A. Nikolaev and D. V. Zak, “Quasi-onedimensional model of self-sustaining multifront gas detonation with losses and turbulence taken into account,” Combust. Expl. Shock Waves, 25, No. 2, 225–232 (1989).Google Scholar
  20. 20.
    Yu. A. Nikolaev and O. P. Gaponov, “On gas detonation limits,” Combust. Expl. Shock Waves, 31, No. 3, 395–400 (1995).Google Scholar
  21. 21.
    Yu. A. Nikolaev, “Theory of detonation in wide tubes,” Combust. Expl. Shock Waves, 15, No. 3, 403–409 (1979).Google Scholar
  22. 22.
    A. A. Grib Unsteady Motions of Continuous Media [in Russian], Gos. Izd. Tekh.-Teor. Lit., Moscow (1955), p. 364 [cited by K. P. Stanyukovich (1941)].Google Scholar
  23. 23.
    S. A. Zhdan, “Analysis of the explosion of gas mixtures with a shift in the chemical equilibrium of the products taken into account,” Combust. Expl. Shock Waves, 19, No. 1, 124–127 (1983).Google Scholar
  24. 24.
    N. S. Astapov, Yu. A. Nikolaev, and V. Yu. Ul'yanitskii, “Detonation parameters of hydrogen-oxygen and hydrogen-air mixtures at high initial density,” Combust. Expl. Shock Waves, 20, No. 1, 89–96 (1984).Google Scholar
  25. 25.
    V. I. Manzhalei, “Lifetime of a multifront structure in overcompressed detonation waves in gases, ”Combust. Expl. Shock Waves, 15, No. 4, 507–513 (1979).Google Scholar
  26. 26.
    Ya. B. Zeldovich, “Regime classification of an exothermic reaction with nonuniform initial conditions,” Combust. Flame, 39, No. 2, 211–214 (1980).Google Scholar
  27. 27.
    Y. B. Zeldovich, B. E. Gelfand, S. A. Tsyganov, et al., “Concentration and temperature nonuniformities of combustible mixtures as reason for pressure waves generation,” in: A. L. Kuhl et al. (eds.), Progress in Astronautics and Aeronautics, Vol. 114: Dynamics of Explosion, Washington (1988), pp. 99–123.Google Scholar
  28. 28.
    A. M. Bartenev and B. E. Gelfand, “Spontaneous initiating of detonations,” Prog. Energy Combust. Sci., 26, 29–55 (2000).Google Scholar
  29. 29.
    A. M. Khokhlov, E. S. Oran, and G. O. Thomas, “Numerical simulation of deagration-to-detonation transition: The role of shock-ame interactions in turbulent ames,” Combust. Flame, 117, 323–339 (1999).Google Scholar
  30. 30.
    D. V. Voronin and V. V. Mitrofanov, “Pseudoundercompressed detonation in sprays,” Combust. Expl. Shock Waves, 21, No. 5, 583–587 (1985).Google Scholar
  31. 31.
    A. A. Vasiliev, T. P. Gavrilenko, and M. E. Topchian, “On the Chapman-Jouguet surface in multi-headed gaseous detonations,” Astronaut. Acta, 17, Nos. 4-5, 499–502 (1972).Google Scholar
  32. 32.
    A. A. Vasil'ev, T. P. Gavrilenko, V. V. Mitrofanov, et al., “Location of the sonic transition behind a detonation front,” Combust. Expl. Shock Waves, 8, No. 1, 80–84 (1972).Google Scholar
  33. 33.
    A. A. Vasil'ev, T. P. Gavrilenko, and M. E. Topchiyan, “Chapman-Jouguet condition for real detonation waves,” Combust. Expl. Shock Waves, 9, No. 2, 268–272 (1973).Google Scholar
  34. 34.
    V. I. Manzhalei and V. V. Mitrofanov, “The stability of detonation shock waves with a spinning configuration,” Combust. Expl. Shock Waves, 9, No. 5, 614–620 (1973).Google Scholar
  35. 35.
    A. A. Vasil'ev and Yu. A. Nikolaev, “Model of the nucleus of a multifront gas detonation,” Combust. Expl. Shock Waves, 12, No. 5, 667–674 (1976).Google Scholar
  36. 36.
    A. A. Vasiliev and Yu. A. Nikolaev, “Closed theoretical model of detonation cell,” Acta Astronaut., 5, 983–996 (1978).Google Scholar
  37. 37.
    V. Yu. Ul'yanitskii, “Role of ‘flashing’ and transversewave collisions in the evolution of a multifrontal detonation-wave structure in gases,” Combust. Expl. Shock Waves, 17, No. 2, 227–232 (1981).Google Scholar
  38. 38.
    E. S. Oran, J. W. Weber, E. I. Stefaniw, et al., “A numerical study of a two-dimensional H2—O2—Ar detonation using a detailed chemical reaction model,” Combust. Flame, 113, 147–163 (1998).Google Scholar
  39. 39.
    A. V. Trotsyuk, “Numerical simulation of the structure of two-dimensional gaseous detonation of an H2—O2—Ar mixture,” Combust. Expl. Shock Waves, 35, No. 5, 549–558 (1999).Google Scholar
  40. 40.
    D. N. Williams, L. Bauwens, and E. S. Oran, “Detailed structure and propagation of three-dimensional detonations,” in: Twenty-Sixth Symp. (Int.) on Combustion, The Combustion Inst. (1996), pp. 2991–2998.Google Scholar
  41. 41.
    A. A. Vasil'ev, “Geometric limits of gas detonation propagation,” Combust. Expl. Shock Waves, 18, No. 2, 245–249 (1982).Google Scholar
  42. 42.
    A. A. Vasiljev, “The limits of stationary propagation of gaseous detonation,” in: A. A. Borisov (ed.), Dynamic Structure of Detonation in Gaseous and Dispersed Media, Vol. 5: Fluid Mechanics and Its Applications, Kluwer Academic Publishers, Dordrecht-Boston-London (1991), pp. 27–49.Google Scholar
  43. 43.
    V. I. Manzhalei, “Low-velocity detonation limits of gaseous mixtures,” Combust. Expl. Shock Waves, 35, No. 3, 296–302 (1999).Google Scholar
  44. 44.
    S. M. Frolov and B. E. Gelfand, “Limiting diameter of gas-detonation propagation in tubes,” Dokl. Akad. Nauk SSSR, 312, No. 5, 1177–1180 (1990).Google Scholar
  45. 45.
    G. L. Agafonov and S. M. Frolov, “Computation of the detonation limits in gaseous hydrogen-containing mixtures,” Combust. Expl. Shock Waves, 30, No. 1, 91–100 (1994).Google Scholar
  46. 46.
    Yu. B. Khariton, “Detonation capability of explosives,” in: Some Issues of the Theory of Explosives (collected scientific papers) [in Russian], No. 1, Izd. Akad. Nauk SSSR, Moscow-Leningrad (1947), pp. 7–28.Google Scholar
  47. 47.
    Yu. A. Nikolaev, M. E. Topchiyan, and V. Yu. Ul'yanitskii, “Experimental investigation and calculation of triple configurations of spin detonation,” Combust. Expl. Shock Waves, 14, No. 6, 790–793 (1978).Google Scholar
  48. 48.
    V. Yu. Ul'yanitskii, “Experimental investigation of the volumetric structure of a spinning detonation,” Combust. Expl. Shock Waves, 16, No. 1, 99–103 (1980).Google Scholar
  49. 49.
    V. Yu. Ul'yanitskii, “Galloping mode in a gas detonation,” Combust. Expl. Shock Waves, 17, No. 1, 93–96 (1981).Google Scholar
  50. 50.
    S. M. Aksamentov, V. I. Manzhaley, and V. V. Mitrofanov, “Numerical modeling of galloping detonation,” in: A. L. Kuhl et al. (eds.), Progress in Astronautics and Aeronautics, Vol. 153: Dynamics Aspects of Detonation, AIAA, Washington (1993), pp. 112–131.Google Scholar
  51. 51.
    V. I. Manzhalei, “Detonation regimes of gases in capillaries,” Combust. Expl. Shock Waves, 28, No. 3, 296–301 (1992).Google Scholar
  52. 52.
    A. A. Vasil'ev and D. V. Zak, “Detonation of gas jets,” Combust. Expl. Shock Waves, 22, No. 4, 463–468 (1986).Google Scholar
  53. 53.
    A. A. Borisov, V. N. Mikhalkin, and S. V. Khomik, “Experimental investigation of detonation propagation of gas mixtures in a free cylindrical charge,” Khim. Fiz., 8, No. 6, 798–809 (1989).Google Scholar
  54. 54.
    Yu. N. Zhebeko, A. Ya. Korol'chenko, and S. G. Tsarichenko, “Numerical modeling of detonationwave propagation in a gas layer, taking detailed account of chemical kinetics,” Combust. Expl. Shock Waves, 28, No. 5, 568–570 (1992).Google Scholar
  55. 55.
    E. K. Dabora, J. A. Nicholls, and R. B. Morrison, “The inuence of a compressible boundary on the propagation of gaseous detonations,” in: 10th Symp. (Int.) on Combustion (1964), pp. 817–830.Google Scholar
  56. 56.
    A. A. Vasil'ev, “Near-limiting detonation in channels with porous walls,” Combust. Expl. Shock Waves, 30, No. 1, 101–106 (1994).Google Scholar
  57. 57.
    S. A. Zhdan and E. S. Prokhorov, “Quasi-onedimensional calculation of detonation in a channel of variable cross section,” Combust. Expl. Shock Waves, 20, No. 5, 563–566 (1984).Google Scholar
  58. 58.
    T. P. Gavrilenko and E. S. Prokhorov, “Compressed detonation wave in a gas,” Combust. Expl. Shock Waves, 17, No. 6, 689–691 (1981).Google Scholar
  59. 59.
    T. P. Gavrilenko, V. V. Grigor'ev, A. V. Trotsyuk, and V. Yu. Ul'yanitskii, “Acceleration of particles by a supercompressed detonation wave,” Combust. Expl. Shock Waves, 21, No. 6, 746–751 (1985).Google Scholar
  60. 60.
    A. V. Trotsyuk, “Numerical study of the reection of detonation waves from a wedge,” Combust. Expl. Shock Waves, 35, No. 6, 690–697 (1999).Google Scholar
  61. 61.
    S. A. Zhdan and E. S. Prokhorov, “The formation and propagation of super-compressed gas detonation waves in conical converging channels,” Combust. Expl. Shock Waves, 31, No. 5, 585–592 (1995).Google Scholar
  62. 62.
    T. P. Gavrilenko, Yu. A. Nikolaev, and M. E. Topchiyan, “Supercompressed detonation waves, ”Combust. Expl. Shock Waves, 15, No. 5, 659–662 (1979).Google Scholar
  63. 63.
    E. S. Prokhorov, “Gas detonation propagation in a medium of variable chemical composition,” in: Proc. 4th Int. Colloq. on Dust Explosions, Porabka-Kozubnic, Poland, November 4–9 (1990), pp. 386–401.Google Scholar
  64. 64.
    V. V. Mitrofanov and R. I. Soloukhin, “Diffraction of a multifront detonation wave,” Dokl. Akad. Nauk SSSR, 159, No. 5, 1003–1006 (1964).Google Scholar
  65. 65.
    A. A. Vasil'ev and V. V. Grigor'ev, “Critical conditions for gas detonation in sharply expanding channels,” Combust. Expl. Shock Waves, 16, No. 5, 579–585 (1980).Google Scholar
  66. 66.
    A. A. Vasil'ev, “Near-critical regimes of gas detonation,” Doctor's Dissertation in Phys.-Math. Sci., Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1995).Google Scholar
  67. 67.
    S. M. Kogarko, “Possibility of detonation of gas mixtures in conical tubes,” Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 4, 419–426 (1956).Google Scholar
  68. 68.
    R. A. Strehlow and R. J. Salm, “The failure of marginal detonations in expanding channels,” Acta Astronaut., 3, No. 11, 983–994 (1976).Google Scholar
  69. 69.
    D. A. Jones, G. Kemister, N. A. Tonello, et al., “Numerical simulation of detonation reignition in H2—O2 mixtures in area expansions,” in: Conference Proc. 16-ICDERS, Univ. of Mining and Metallurgy AGH, Cracow, Poland (1997), pp. 102.Google Scholar
  70. 70.
    A. L. Podrebennikov, B. E. Gelfand, S. M. Kogarko, and A. A. Borisov, “Reasons of spherical detonation in a closed volume,” Dokl. Akad. Nauk SSSR, 184, No. 4, 883–885 (1969).Google Scholar
  71. 71.
    R. Knystautas and J. H. Lee, “On the effective energy for direct initiation of gaseous detonations,” Combust. Flame, 27, No. 2, 221–228 (1976).Google Scholar
  72. 72.
    A. A. Vasil'ev, Yu. A. Nikolaev, and V. Yu. Ul'yanitskii, “Critical energy of initiation of a multifront detonation,” Combust. Expl. Shock Waves, 15, No. 6, 768–775 (1979).Google Scholar
  73. 73.
    A. A. Vasil'ev, “Detonation hazards of gaseous mixtures,” in: NATO Science Series, Ser. 1: Disarmament Technologies, Vol. 70: V. E. Zarko, V. Weiser, N. Eizenreich, and A. A. Vasil'ev (eds.), Preventation of Hazardous Fires and Explosions. The Transfer to Civil Applications of Military Experiences, Kluwer Acad. Publ. (1999), pp. 93–108.Google Scholar
  74. 74.
    V. F. Klimkin, R. I. Soloukhin, and P. Wolansky, “Initial stages of a spherical detonation directly initiated by a laser spark,” Combust. Flame, 21, No. 1, 111–117 (1973).Google Scholar
  75. 75.
    A. A. Vasil'ev, “The experimental methods and calculating models for definition of the critical initiation energy of multifront detonation wave,” in: Conference Proc. 16-ICDERS, Univ. of Mining and Metallurgy AGH, Cracow, Poland (1997), pp. 152–155.Google Scholar
  76. 76.
    V. Yu. Ul'yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. I. Point initiation,” Combust. Expl. Shock Waves, 16, No. 3, 331–341 (1980).Google Scholar
  77. 77.
    V. Yu. Ul'yanitskii, “Closed model of direct initiation of gas detonation taking account of instability. II. Nonpoint initiation,” Combust. Expl. Shock Waves, 16, No. 4, 427–434 (1980).Google Scholar
  78. 78.
    V. A. Levin, V. V. Markov, and S. F. Osinkin, “Initiation of detonation in hydrogen—air mixture by explosion of a spherical TNT charge,” Combust. Expl. Shock Waves, 31, No. 2, 207–210 (1995).Google Scholar
  79. 79.
    A. A. Vasil'ev, A. I. Valishev, V. A. Vasil'ev, et al., “Parameters of detonation waves at elevated pressures and temperatures,” Khim. Fiz., 16, No. 11, 114–118 (1997).Google Scholar
  80. 80.
    A. A. Vasil'ev, E. I. Valishev, V. A. Vasil'ev, et al., “Hydrogen accidents and their hazards,” in: NATO Science Series, Ser. 1: Disarmament Technologies, Vol. 70: V. E. Zarko, V. Weiser, N. Eizenreich, and A. A. Vasil'ev (eds.), Preventation of Hazardous Fires and Explosions. The Transfer to Civil Applications of Military Experiences, Kluver Acad. Publ. (1999), pp. 151–165.Google Scholar
  81. 81.
    A. N. Afanas'ev, L. N. Bortnikov, et al., “Reduction of motor toxic by hydrogen addition,” in: Proc. of 5th Int. Conf. on Technologies and Combustion for a Clean Environment, Vol. 2, Lisbon, Portugal (1999), pp. 1075–1077.Google Scholar
  82. 82.
    A. A. Vasil'ev, “Detonation combustion of gas mixtures using a hypervelocity projectile,” Combust. Expl. Shock Waves, 33, No. 5, 583–597 (1997).Google Scholar
  83. 83.
    N. N. Smirnov, V. F. Nikitin, M. V. Tyurnikov, et al., “Control of detonation onset incombustible gases,” in: G. D. Roy, S. M. Frolov, D. W. Netzer, and A. A. Borisov (eds.), High-Speed Deagration and Detonation: Fundamentals and Control, ELEX-KM Publ., Moscow (2001), pp. 3–30.Google Scholar
  84. 84.
    V. I. Makeev, A. A. Ponomarev, and V. V. Strogonov, “Combustion and the transition to detonation in a gas mixture in a closed space,” Combust. Expl. Shock Waves, 29, No. 3, 415–418 (1993).Google Scholar
  85. 85.
    V. Yu. Ulianitsky, A. A. Vasiliev, T. P. Gavrilenko, A. N. Krasnov, Yu. A. Nikolaev, and N. I. Podenkov, “Barrel of an apparatus for applying coatings by gas detonation,” U.S. Patent No. 5,052,619 (1991).Google Scholar
  86. 86.
    A. A. Vasil'ev, Yu. A. Nikolaev, A. V. Trotsyuk, and I. I. Fridman, “Using gas detonation for cleaning technological equipment from dust deposits,” in: Issues of Using Detonation in Technological Processes [in Russian], Lavrent'ev Inst. of Hydrodynamics, Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1986), pp. 131–141.Google Scholar
  87. 87.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford-New York (1966).Google Scholar
  88. 88.
    B. H. Hjertager, T. Solberg, and K. O. Nymoen, “Computer modeling of gas explosion propagation in offshore modules,” J. Loss. Process Ind., 5, No. 3, 165–174 (1992).Google Scholar
  89. 89.
    E. Oran and J. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).Google Scholar
  90. 90.
    R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Communs Pure Appl. Math. 8, 13, No. 2, 297–319 (1960).Google Scholar
  91. 91.
    E. E. Meshkov, “Instability on an accelerating boundary of two gases,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 151–158 (1969).Google Scholar
  92. 92.
    S. A. Zhdan, V. V. Mitrofanov, and A. I. Sychev, “Reactive impulse from the explosion of a gas mixture in a semiinfinite space,” Combust. Expl. Shock Waves, 30, No. 5, 657–663 (1994).Google Scholar
  93. 93.
    R. M. Poorman, H. B. Sargent, and H. Lamprey, “Method and apparatus utilizing detonation waves for spraying and other purposes,” U.S. Patent No. 2,714,553, August 2 (1955).Google Scholar
  94. 94.
    A. I. Zverev, S. Yu. Sharivker, and E. A. Astakhov, Detonation Spraying of Coatings [in Russian], Sudostroenie, Moscow (1979).Google Scholar
  95. 95.
    S. S. Barten'ev, Yu. P. Fed'ko, and A. I. Grigor'ev, Detonation Coatings in Machine Building [in Russian], Mashinostroenie, Leningrad (1982).Google Scholar
  96. 96.
    T. P. Gavrilenko, Yu. A. Nikolaev, E. S. Prokhorov, and B. Yu. Ul'yanitskii, “Mechanisms of coating formation with ame spraying,” Combust. Expl. Shock Waves, 26, No. 2, 228–238 (1990).Google Scholar
  97. 97.
    T. P. Gavrilenko, Yu. A. Nikolaev, and B. Yu. Ul'yanitskii, New Materials and Technologies. Theory and Practice of Reinforcement of Materials Under Extreme Conditions [in Russian], Nauka, Novosibirsk (1992).Google Scholar
  98. 98.
    B. Yu. Ul'yanitskii, “Physical fundamentals of detonation spraying,” Doctoral Dissertation in Tech. Sci., Inst. Theor. Appl. Mech., Sib. Div., Russian Acad. of Sci., Novosibirsk (2001).Google Scholar
  99. 99.
    T. P. Gavrilenko, Yu. A. Nikolaev, B. Yu. Ul'yanitskii, and M. Ch. Kim, “Residual stresses in detonation coatings,” in: Coating Films'98, Proc. Int. Conf., St. Petersburg (1998), pp. 124–129.Google Scholar
  100. 100.
    T. P. Gavrilenko, Grigoriev V. V., Zhdan S. A., et al., “Acceleration of solid particles by gaseous detonation products,” Combust. Flame, 66, 121–128 (1986).Google Scholar
  101. 101.
    V. V. Grigor'ev, “Simultaneous measurement of surface temperature and velocity of individual particles driven by a gas detonation,” Fiz. Goreniya Vzryva, 26, No. 1, 115–120 (1990).Google Scholar
  102. 102.
    V. V. Grigor'ev, Prokhorov Ye. S. Velocity and temperature of particles accelerated by gas detonation, in: Proc. X Int. Conf. HERF, Yugoslavia (1989), pp. 867–871.Google Scholar
  103. 103.
    V. V. Grigor'ev, “Experimental study of the ow of gas-detonation products with particles,” Candidate's Dissertation in Phys.-Math. Sci., Inst. of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (1991).Google Scholar
  104. 104.
    T. P. Gavrilenko, Yu. A. Nikolaev, B. Yu. Ul'yanitskii, A. M. Khairutdinov, and V. Kh. Kadyrov, “Method of gas-detonation application of coatings,” USSR Author's Certificate No. 1220375 (1985).Google Scholar
  105. 105.
    T. P. Gavrilenko, Yu. A. Nikolaev, V. V. Mitrofanov, A. A. Vasil'ev, and M. E. Topchiyan, “Facility for particle acceleration,” USSR Author's Certificate No. 613551 (1978).Google Scholar
  106. 106.
    T. P. Gavrilenko, Yu. A. Nikolaev, and B. Yu. Ulianitskii “Application of overdriven gaseous detonation for spraying,” in: Proc. of the 15th Int. Thermal Spray Conf., Nice, France (1998), pp. 1475–1483.Google Scholar
  107. 107.
    T. P. Gavrilenko, Yu. A. Nikolaev, and B. Yu. Ul'yanitskii, “New capabilities of detonation spraying,” in: Lavrent'ev Readings in Mechanics and Physics,” Proc. Int. Conf. (Sept. 25–29, 2002), Novosibirsk (2002), pp. 53–54.Google Scholar
  108. 108.
    T. P. Gavrilenko, Yu. A. Nikolaev, and B. Yu. Ul'yanitskii, “Method for generating a gas-powder flow,” Patent of the Russian Federation, No. 1628558 (1993).Google Scholar
  109. 109.
    T. P. Gavrilenko, Yu. A. Nikolaev, V. V. Vasil'ev, V. A. Nevgod, and A. M. Khairutdinov, “Device for gas-detonation application of coatings,” Patent of the Russian Federation, No. 1822010 (1993).Google Scholar
  110. 110.
    A. I. Buteev, T. P. Gavrilenko, Yu. A. Nikolaev, B. Yu. Ul'yanitskii, L. I. Kalinin, and A. N. Krasnov, “Device for detonation application of coatings,” Patent of the Russian Federation, No. 1257912 (1993).Google Scholar
  111. 111.
    Yu. P. Fed'ko, “Facility for application of coatings by powder materials,” USSR Author's Certificate, No. 508994 (1973).Google Scholar
  112. 112.
    A. I. Zverev et al., “Device for application of coatings,” USSR Author's Certificate, No. 1047020 (1982).Google Scholar
  113. 113.
    A. V. Chernyshov, “Detonation gun apparatus and method,” U.S. Patent, No. 6,000,627 December 14 (1999).Google Scholar
  114. 114.
    D. I. Baklanov, L. G. Gvozdeva, and N. B. Scherbak, “Pulsed detonation combustion chamber for PDE, ”in: G. D. Roy, S. M. Frolov, D. W. Netzer, and A. A. Borisov (eds.), High-Speed Deagration and Detonation: Fundamentals and Control, ELEX-KM Publishers, Moscow (2001), pp. 239–250.Google Scholar
  115. 115.
    T. P. Gavrilenko, Nikolaev Ju. A., and Ulianitsky V. Yu., “D-Gun ‘Ob’ detonation spraying,” in: Proc. of the 14th Int. Thermal Spray Conf., Vol. 1, Kobe, Japan (1995), pp. 425–429.Google Scholar
  116. 116.
    T. P. Gavrilenko, Yu. A. Nikolaev, V. Yu. Ulianitsky, et al., “Computational code for detonation spraying process,” in: Proc. of the 15th Int. Thermal Spray Conf. (25–29 May, 1998, Nice, France) (1998), pp. 1475–1483.Google Scholar
  117. 117.
    L. A. Kantor, S. A. Kantor, and M. P. Strongin, “Calculations on dust-detonation coating,” Combust. Expl. Shock Waves, 23, No. 4, 497–500 (1987).Google Scholar
  118. 118.
    O. P. Solonenko, A. P. Alkhimov, V. V. Marusin, et al., High-Energy Processes in Material Processing, Vol. 18: Low-Temperature Plasma [in Russian], Nauka, Novosibirsk (2000).Google Scholar
  119. 119.
    G. Irons, Sie Technology Papers, Ser. No. 920947 (1992).Google Scholar
  120. 120.
    N. N. Smirnov, V. F. Nikitin, A. P. Boichenko, et al., “Control of deagration to detonation transition in gases and its application to pulsed detonation devices,” in: G. Roy (ed.), Gaseous and Heterogeneous Detonations, ENAS Publ., Moscow (1999), pp. 65–94.Google Scholar
  121. 121.
    A. I. Kharitonov, D. I. Baklanov, V. V. Golub, et al., “Device for processing worn tires,” Patent of the Russian Federation, No. 2080261 (1994).Google Scholar
  122. 122.
    D. I. Baklanov, L. G. Gvozdeva, V. V. Golub, et al., “Device for processing polymeric materials,” Patent of the Russian Federation, No. 2015892 (1997).Google Scholar
  123. 123.
    U.S. Patent, No. 3666252A, cl. 266-2 (1972).Google Scholar
  124. 124.
    O. I. Stoyanovskii, A. F. Cherendin, V. V. Mitrofanov, et al., “Facility for thermal removal of rough edges,” Author's Certificate No. 864800, Priority of 03.31.78.Google Scholar
  125. 125.
    V. I. Manzhalei, “Experimental investigations of shockwave decay and heat transfer to bodies after gas detonation in chambers,” in: Mechanics of Reacting Media and Its Applications [in Russian], Nauka, Novosibirsk (1989), pp. 123–132.Google Scholar
  126. 126.
    P. L. Abiduev, S. N. Korobeinikov, and V. I. Manzhalei, “Accounting for finite detonation wave velocity when designing a chamber for thermoenergetic material processing,” Combust. Expl. Shock Waves, 28, No. 11, 73–78 (1992).Google Scholar
  127. 127.
    Ya. B. Zel'dovich, “Energy use of detonation burning,” Zh. Tekh. Fiz., X, No. 17, 1434 (1940).Google Scholar
  128. 128.
    V. A. Levin, Yu. N. Nechaev, and A. I. Tarasov, “New approach to organizing the operating process in pulsed detonation engines,” Khim. Fiz., 20, No. 6, 90–98 (2001).Google Scholar
  129. 129.
    D. Desbordes, E. Daniau, and R. Zitoun, “Pulsed detonation propulsion: key issues,” in: G. Roy, S. Frolov, D. Netzer, and A. Borisov (eds.), High-Speed Deagration and Detonation. Fundamental and Control, ELEX-KM Publ., Moscow (2001), pp. 177–192.Google Scholar
  130. 130.
    N. Kh. Remeev, V. V. Vlasenko, R. A. Khakimov, and V. V. Ivanov, “State of the art and problems in development of the technology of the air-breathing pulsed detonation engine,” Khim. Fiz., 20, No. 7, 119–129 (2001).Google Scholar
  131. 131.
    V. G. Aleksandrov, F. N. Kraiko, and K. S. Reent, “Mathematical model of a supersonic air-breathing pulsed detonation engine,” Khim. Fiz., 20, No. 6, 84–89 (2001).Google Scholar
  132. 132.
    F. A. Bykovskii and V. V. Mitrofanov, “Detonation combustion of a gas mixture in a cylindrical chamber,” Combust. Expl. Shock Waves, 16, No. 5, 570–578 (1980).Google Scholar
  133. 133.
    F. A. Bykovskii, A. A. Vasil'ev, E. F. Vedernikov, and V. V. Mitrofanov, “Explosive combustion of a gas mixture in radial annular chambers,” Combust. Expl. Shock Waves, 30, No. 4, 510–516 (1994).Google Scholar
  134. 134.
    K. Kailasanath and Li Chiping, “Ram accelerators in the detonative mode,” in: 18th Int. Colloq. on the Dynamics of Explosions and Reactive Systems, University Washington, Seattle (2001); (CD ISBN 0-9711740-0-8).Google Scholar
  135. 135.
    C. Bundy, C. Knowlen, and A. P. Bruckner, “Ram accelerator operation at 15 to 20 MPa fill pressure,” ibid.Google Scholar
  136. 136.
    P. V. Kryukov, “100-MJ ballistic setup for thermonuclear ignition,” in: Proc. IV Zababakhin Scientific Readings, Int. Conf., Russian Federal Nuclear Center, Snezhinsk (1995), pp. 51–54.Google Scholar
  137. 137.
    V. V. Andreev, L. A. Luk'yanchikov, V. V. Mitrofanov, and V. S. Teslenko, “Excitation of detonation of powdered HE by explosions in gas mixtures,” Fiz. Goreniya Vzryva, 16, No. 5, 153–155 (1980).Google Scholar
  138. 138.
    V. V. Andreev, A. A. Vasil'ev, L. A. Luk'yanchikov, and G. G. Lyutikov, “Generator of supersonic jets,” Patent of the Russian Federation, No. 1010920 (1993), Priority of 1981.Google Scholar
  139. 139.
    V. V. Andreev, A. A. Vasil'ev, L. A. Luk'yanchikov, and G. G. Lyutikov, “Generator of supersonic jets,” Patent of the Russian Federation, No. 1253246 (1993), Priority of 1984.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Yu. A. Nikolaev
    • 1
  • A. A. Vasil'ev
    • 1
  • B. Yu. Ul'yanitskii
    • 1
  1. 1.Siberian Division, Russian Academy of SciencesLavrent'ev Institute of HydrodynamicsNovosibirsk

Personalised recommendations