Digestive Diseases and Sciences

, Volume 48, Issue 8, pp 1565–1581 | Cite as

REVIEW: Small Bowel Review: Normal Physiology, Part 2

  • Alan B.R. Thomson
  • Laurie Drozdowski
  • Claudiu Iordache
  • Ben K.A. Thomson
  • Severine Vermeire
  • M. Tom Clandinin
  • Gary Wild
Article
small bowel bowel physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Zhang X, Fogel R, Renehan WE: Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex. Am J Physiol 277: G79–G90, 1999Google Scholar
  2. 2.
    DeWitt RC, Kudsk KA: The gut's role in metabolism, mucosal barrier function, and gut immunology. Infect Dis Clin North 13: 465–481, 1999Google Scholar
  3. 3.
    Daugherty AL, Mrsny RJ: Transcellular uptake mechanisms of the intestinal epithelial barrier part one. Pharm Sci Technol Today 144–151, 1999Google Scholar
  4. 4.
    Karczewski J, Groot J: Molecular physiology and pathophysiology of tight junctions III. Tight junction regulation by intracellular messengers: differences in response within response within and between epithelia. Am J Physiol Gastrointest Liver Physiol 279: G660–G665, 2000Google Scholar
  5. 5.
    Nusrat A, Turner JR, Madara JL: Molecular physiology and patho-physiology of tight junctions IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279: G851–G857, 2000Google Scholar
  6. 6.
    Kurjak M, Fritsch R, Suar D, Schusdziarra V, Allescher HD: NO releases bombesin-like immunoreactivity from enteric synaptosomes by cross-activation of protein kinase A. Am J Physiol 276: G1521–G1530, 1999Google Scholar
  7. 7.
    Yu CF, Sanders MA, Basson MD: Human Caco-2 motility redistributes FAK and paxillin and activates p38 MAPK in a matrix-dependent manner. AmJ Physiol Gastrointest Liver Physiol 278: G952–G966, 2000Google Scholar
  8. 8.
    McKay DM, Botelho F, Ceponis PJ, Richards CD: Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. AmJ Physiol Gastrointest Liver Physiol 279: G1094–G1103, 2000Google Scholar
  9. 9.
    Ferruzza S, Scarino ML, Rotilio G, Ciriolo MR, Santaroni P, Muda AO, Sambuy Y: Copper treatment alters the permeability of tight junctions in cultured human intestinal Caco-2 cells. Am J Physiol 277: G1138–G1148, 1999Google Scholar
  10. 10.
    Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S: Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol 94: 200–207, 1999Google Scholar
  11. 11.
    Ferraris RP, Carey HV: Intestinal transport during fasting and malnutrition. Annu Rev Nutr 20: 195–219, 2000Google Scholar
  12. 12.
    Fihn B-M, Sjoqvist A, Jodal M: Permeability of the rat small intestinal epithelium along the villuscrypt axis: effects of glucose transport. Gastroenterol 119: 1029–1036, 2000Google Scholar
  13. 13.
    Rongione AJ, Kusske AM, Newton TR, Ashley SW, Zinner MJ, McFadden DW: EGF and TGF stimulate proabsorption of glucose and electrolytes by NaC/glucose cotransporter in awake canine model. Dig Dis Sci 46: 1740–1747, 2001Google Scholar
  14. 14.
    Banan A, Fields JZ, Zhang Y, Keshavarzian A: iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am J Physiol Gastrointest Liver Physiol 280: G1234–G1246, 2001Google Scholar
  15. 15.
    Marano CW, Garulacan LA, Ginanni B, Mullin JM: Pharbol ester treatment increases paracellular permeability across IEC-18 gastrointestinal epithelium in vitro. Dig Dis Sci 46: 1490–1499,2001Google Scholar
  16. 16.
    Benjamin MA, McKay DM, Yang P-C, Cameron H, Perdue MH: Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 47: 112–119, 2000Google Scholar
  17. 17.
    Meddings JB, Swain MG: Environmental stress-induced gastroin-testinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterol 119: 1019–1028, 2000Google Scholar
  18. 18.
    Iwata H, Matsushita M, Nishikimi N, Sakurai T, Nimura Y: Intestinal permeability is increased in patients with intermittent claudication. J Vasc Surg 31: 1003–1007, 2000Google Scholar
  19. 19.
    Menzies IS, Zuckerman MJ, Nukajam WS, Somasundaram SG, Murphy B, Jenkins AP, Crane RS, Gregory GG: Geography of intestinal permeability and absorption. Gut 44: 483–489, 1999Google Scholar
  20. 20.
    Suenaert P, Bulteel V, Hond ED, Hiele M, Peeters M, Monsuur F, Ghoos Y, Rutgeerts P: The effects of smoking and indomethacin on small intestinal permeability. Aliment Pharmacol Ther 14: 819–822, 2000Google Scholar
  21. 21.
    Kimura RE, Dy SA, Uhing MR, Beno DW, Jiyamapa VA, Lloyd-Still JD: The effects of high-dose ibuprofen and pancreatic enzymes on the intestine of the rat. J Pediatr Gastroenterol Nutr 29: 178–183, 1999Google Scholar
  22. 22.
    Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P: Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn's disease. J Parenter Enteral Nutr 23: 7–11, 1999Google Scholar
  23. 23.
    Plauth M, Schneider BH, Raible A, Hartmann F: Effects of vascular or luminal administration and of simulaneous glucose availability on glutamine utilization by isolated rat small intestine. Int J Colorectal Dis 14: 95–100, 1999Google Scholar
  24. 24.
    Weiss MD, DeMarco V, Strauss DM, Samuelson DA, Lane ME, Neu J: Glutamine synthetase: a key enzyme for intestinal epithelial differentiation? J Parenter Enteral Nutr 23: 140–146, 1999Google Scholar
  25. 25.
    Santos GC, Zucoloto S, Garcia SB: Endocrine cells in the denervated intestine. Int J Exp Pathol 81: 265–270, 2000Google Scholar
  26. 26.
    Rao JN, Li J, Li L, Bass BL, Wang JY: Differentiated intestinal cells exhibit increased migration through polyamines and myosin II. Am J Physiol 277: G1149–G1158, 1999Google Scholar
  27. 27.
    Ruthig DJ, Meckling-Gill KA: Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr 129: 1791–1798, 1999Google Scholar
  28. 28.
    Catanoso M, Lo Gullo R, Giofre MR, Pallio S, Tortora A, Lo Presti M, Frisina N, Bagnato G, Fries W: Gastrointestinal permeability is increased in patients with limited systemic sclerosis. Scand J Rheumatol 30: 77–81, 2001Google Scholar
  29. 29.
    Piena-Spoel M, Albers MJ, Ten Kate J, Tibboel D: Intestinal permeability in newborns with necrotizing enterocolitis and controls: does the sugar absorption test provide guidelines for the time to (re-)introduce enteral nutrition? J Pediatr Surg 36: 587–592, 2001Google Scholar
  30. 30.
    Thanou M, Verhoef JC, Marbach P, Junginger HE: Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 89: 951–957, 2000Google Scholar
  31. 31.
    Nissan A, Ziv E, Kidron M, Bar-On H, Friedman G, Hyam E, Eldor A: Intestinal absorption of low molecular weight heparin in animals and human subjects. Haemostasis 30: 225–232, 2000Google Scholar
  32. 32.
    Sugi K, Musch MW, Di A, Nelson DJ, Chang EB: Oxidants potentiate Ca 2 C-and cAMP-stimulated Cl¡ secretion in intestinal epithelial T84 cells. Gastroenterology 120: 89–98, 2001Google Scholar
  33. 33.
    Roche HM, Terres AM, Black IB, Gibney MJ, Keleher D: Fatty acids and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut 48: 797–802, 2001Google Scholar
  34. 34.
    Valle L, Pol O, Puig MM: Intestinal inflammation enhances the inhibitory effects of opioids on intestinal permeability in mice. J Pharmacol Exp Ther 296: 378–387, 2001Google Scholar
  35. 35.
    Mochizuki K, Suruga K, Yagi E, Takase S, Goda T: The expression of PPAR-associated genes is modulated through postnatal development of PPAR subtypes in the small intestine. Biochim Biophys Acta 1531: 68–76, 2001Google Scholar
  36. 36.
    Wells CL, Jechorek RP, Erlandsen SL: Effect of oral genistein and isoflavone-free diet on cecal flora and bacterial translocation in antibiotic-treated mice. J Parenter Enteral Nutr 24: 56–60, 2000Google Scholar
  37. 37.
    Dickinson E, Tuncer R, Nadler E, Boyle P, Alber S, Watkins S, Ford H: NOX, a novel nitric oxide scavenger, reduces bacterial translocation in rats after endotoxin challenge. Am J Physiol 277: G1281–G1287, 1999Google Scholar
  38. 38.
    Haskel Y, Udassin R, Freund HR, Zhang JM, Hanani M: Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility. J Parenter Enternal Nutr 25: 60–64, 2001Google Scholar
  39. 39.
    Wijesinghe LD, Gilliam AD, MacFie J: Does intestinal translocation of bacteria affect the short, intermediate or long-term mortality of patients undergoing laparotomy? Nutr Res 21: 9–14, 2001Google Scholar
  40. 40.
    Kamaras J, Murrell WG: Intestinal epithelial damage in sids babies and its similarity to that caused by bacterial toxins in the rabbit. Pathol 33: 197–203, 2001Google Scholar
  41. 41.
    Sanderson IR: The physiochemical environment of the neonatal intestine. Am J Clin Nutr 69: 1028S–1034S, 1999Google Scholar
  42. 42.
    Siafakas CG, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR: Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res 45: 652–657, 1999Google Scholar
  43. 43.
    Ramalho-Santos M, Melton DA, McMahon AP: Hedgehog signals regulate multiple aspects of gastrointestinal development. Develop 127: 2763–2772, 2000Google Scholar
  44. 44.
    Vachon PH, Cardin E, Harnois C, Reed JC, Plourde A, Vezina A: Early acquisition of bowel segment-specific Bcl-2 homolog expression profiles during development of the human ileum and colon. Histol Histopathol 16: 497–510, 2001Google Scholar
  45. 45.
    Nankervis CA, Dunaway DJ, Miller CE: Endothelin ETA and ETB receptors in postnatal intestine. Am J Physiol Gastrointest Liver Physiol 280: G555–G562, 2001Google Scholar
  46. 46.
    Ewtushik AL, Bertolo RFP, Ball RO: Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can J Anim Sci 80: 653–662, 2000Google Scholar
  47. 47.
    Morin MJ, Karr SM, Faris RA, Gruppuso PA: Developmental variability in expression and regulation of inducible nitric oxide synthase in rat intestine. Am J Physiol Gastrointest Liver Physiol 281: G552–G559, 2001Google Scholar
  48. 48.
    Duluc I, Hoff C, Kedinger M, Freund J-N: Differentially expressed endoderm and mesenchyme genes along the fetal rat intestine. Genesis 29: 55–59, 2001Google Scholar
  49. 49.
    Clatworthy JP, Subramanian V: Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech Dev 101: 3–9, 2001Google Scholar
  50. 50.
    Booth C, O'shea JA, Potten CS: Maintenance of functional stem cells in isolated and cultured adult intestinal epithelium. Exp Cell Res 249: 359–366, 1999Google Scholar
  51. 51.
    Yamada S, Kojima H, Fujimiya M, Nakamura T, Kashiwagi A, Kikkawa R: Differentiation of immature enterocytes into enteroendocrine cells by Pdx1 overexpression. Am J Physiol Gastrointest Liver Phsiol 281: G229–G236, 2001Google Scholar
  52. 52.
    Wang H, Lu S, Du J, Yao Y, Berschneider HM, Black DD: Regulation of apolipoprotein secretion by long-chain polyunsaturated fatty acids in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 280: G1137–G1144, 2001Google Scholar
  53. 53.
    Sheng H, Shao J, DuBois RN: Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem 276: 14498–4504, 2001Google Scholar
  54. 54.
    Chang Q, Tepperman BL: The role of protein kinase C isozymes in TNF-®-induced cytotoxicity to a rat intestinal epithelial cell line. Am J Physiol Gastrointest Liver Physiol 280: C572–C583,2001Google Scholar
  55. 55.
    Chiu T, Rozengurt E. PKD in intestinal epithelial cells: rapid activation by phorbol esters, LPA, and angiotensin through PKC. Am J Physiol Cell Physiol 280: C929–C942, 2001Google Scholar
  56. 56.
    Krasinski SD, Wering HMV, Tannemaat MR, Grand RJ: differential activation of intestinal gene promoters: functional interactions between GATA-5 and HNF-1®. Am J Physiol Gastrointest Liver Physiol 281: G69–G84, 2001Google Scholar
  57. 57.
    Hori M, Kita M, Torihashi S, Miyamoto S, Won K-J, Sato K, Ozaki H, Karaki H: Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 280: G930–G938, 2001Google Scholar
  58. 58.
    Blikslager AT, Pell SM, Young KM: PGE2 triggers recovery of transmucosal resistance via EP receptor cross talk in porcine ischemia-injured ileum. Am J Physiol Gastrointest Liver Physiol 281: G375–G381, 2001Google Scholar
  59. 59.
    Qu XW, Wang H, De Plaen IG, Rozenfeld RA, Hsueh W: Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. FASEB J 15: 439–446, 2001Google Scholar
  60. 60.
    Potoka DA, Nadler EP, Zhou X, Zhange X-R, Upperman JS, Ford HR. Inhibition of NF-KB by IKB prevents cytokine-induced NO production and promotes enterocyte apoptosis in vitro. Shock 14: 366–373, 2000Google Scholar
  61. 61.
    Li L, Rao JN, Bass BL, Wang J-Y: NF-KB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 280: G992–G1004,2001Google Scholar
  62. 62.
    Renehan AG, Bach SP, Potten CS: The relevance of apoptosis for cellular homeostasis and tumorigenesis in the intestine. Can J Gastroenterol 15: 166–176, 2001Google Scholar
  63. 63.
    Fujimoto K, Iwakiri R, Utsumi H, Kojima M, Ishibashi S, Wu B, Sakata H, Noda T: Effect of the central nervous system on mucosal growth and apoptosis in the small intestine. Digestion 63: 108–111, 2001Google Scholar
  64. 64.
    Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J: Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12: 147–155, 2001Google Scholar
  65. 65.
    Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG: The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 275: 4499–4506, 2000Google Scholar
  66. 66.
    Moucadel V, Soubeyran P, Vasseur S, Dusetti NJ, Dagorn JC, Iovanna JL: Cdx1 promotes cellular growth of epithelial intestinal cells through induction of the secretory protein PAP1. Eur J Cell Biol 80: 156–163, 2001Google Scholar
  67. 67.
    Park J, Schulz S, Waldman SA: Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterol 119: 89–96, 2000Google Scholar
  68. 68.
    Obach RS, Zhang QY, Dunbar D, Kaminsky LS: Metabolic characterization of the major human small intestinal cytochrome p450s. Drug Metab Dispos 29: 347–352, 2001Google Scholar
  69. 69.
    Bertilsson PM, Olsson P, Magnusson KE: Cytokines influence mRNA expression of cytochrome P450 3A4 and MDRI in intestinal cells. J Pharm Sci 90: 638–646, 2001Google Scholar
  70. 70.
    Hashizume T, Imaoka S, Hiroi T, Terauchi Y, Fujii T, Miyazaki H, Kamataki T, Funae Y, cDNA cloning and expression of a novel cytochrome p450 (cyp4f12) from human small intestine. Biochem Biophys Res Commun 280: 1135–1141, 2001Google Scholar
  71. 71.
    Juul SE, Ledbetter DL, Joyce AE, Dame C, Christensen RD, Zhao Y, DeMarco V: Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut 49: 182–189, 2001Google Scholar
  72. 72.
    Jonas CR, Farrell CL, Scully S, Eli A, Estivariz CF, Gu LH, Jones DP, Ziegler TR: Enteral nutrition and keratinocyte growth factor regulate expression of glutathione-related enzyme messenger RNAs in rat intestine. J Parenter Enteral Nutr 24: 67–75, 2000Google Scholar
  73. 73.
    Ghatei MA, Goodlad RA, Taheri S, Mandir N, Brynes AE, Jordinson M, Bloom SR: Proglucagon-derived peptides in intestinal epithelial proliferation. Glucagon-like peptide-2 is a major mediator of intestinal epithelial proliferation in rats. Dig Dis Sci 46: 1255–1263, 2001Google Scholar
  74. 74.
    Liu L, Turner JR, Yu Y, Khan AJ, Jaszewski R, Fligiel SEG, Majumdar APN: Differential expression of EGFR during early reparative phase of the gastric mucosa between young and aged rats. Am J Gastrointest Liver Physiol 275: G943–G950, 1998Google Scholar
  75. 75.
    Gentili C, Boland R, de Boland AR: PTH stimulated PL Cbeta and PL Cgamma isoenzymes in rat enterocytes: influence of ageing. Cell Signal 13: 131–138, 2001Google Scholar
  76. 76.
    Iwakiri D Podolsky DK: A silence inhibitor confers specific expression of intestinal trefoil factor in gobletlike cell lines. Am J Physiol Gastrointest Liver Physiol 280: G1114–G1123, 2001Google Scholar
  77. 77.
    Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH: Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280: C1540–C1554, 2001Google Scholar
  78. 78.
    Cowen T, Johnson RJR, Soubeyre V, Santer RM: Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 47: 653–660, 2000Google Scholar
  79. 79.
    Sandstrom O, El-Salhy M: Human rectal endocrine cells and aging. Mech Ageing Dev 108: 219–226, 1999Google Scholar
  80. 80.
    Brogna A, Ferrara R, Bucceri AM, Lanteri E, Catalano F: Influence of aging on gastrointestinal transit time. An ultrasonographic and radiologic study. Invest Radiol 34: 357–359, 1999Google Scholar
  81. 81.
    Kirkup AJ, Brunsden AM, Grundy D: Receptors and transmission in the brain-gut axis: potential for novel therapies I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280: G787–G794, 2001Google Scholar
  82. 82.
    Blackshaw LA: Receptors and transmission in the brain-gut axis: potential for novel therapies IV. GABAB receptors in the brain-gastroesophageal axis. Am J Physiol Gastrointest Liver Physiol 281: G311–G315, 2001Google Scholar
  83. 83.
    Bercik P, Bouley L, Dutoit P, Blum AL, Kucera P: Quantitative analysis of intestinal motor patterns: spatiotemporal organization of nonneural pacemaker sites in the rat ileum. Gastroenterology 119: 386–394, 2000Google Scholar
  84. 84.
    Ward SM, Sanders KM: Interstitial cells of cajal: primary targets of enteric motor innervation. Anat Rec 262: 125–135, 2001Google Scholar
  85. 85.
    Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B: Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 279: C529–C539, 2000Google Scholar
  86. 86.
    Der T, Bercik P, Donnelly G, Jackson T, Berezin I, Collins SM, Huizinga JD: Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology 119: 1590–1599, 2000Google Scholar
  87. 87.
    Sharkey KA, Kroese AB: Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec 262: 79–90, 2001Google Scholar
  88. 88.
    Miller FH, Kline MJ, Vanagunas AD: Detection of bleeding due to small bowel cholesterol emboli using helical CT examination in gastrointestinal bleeding of obscure origin. Am J Gastroenterol 94: 3623–3625, 1999Google Scholar
  89. 89.
    Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C: Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg 34: 1241–1247, 1999Google Scholar
  90. 90.
    Torihashi S, Nishi K, Tokutomi Y, Nishi T, Ward S, Sanders KM: Blockade of kit signaling induces transdifferentiation of interstitial cels of cajal to a smooth muscle phenotype. Gastroenterology 117: 140–148, 1999Google Scholar
  91. 91.
    Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM: Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterol 117: 584–594, 1999Google Scholar
  92. 92.
    Blennerhassett MG, Lourenssen S: Neural regulation of intestinal smooth muscle growth in vitro. Am J Physiol Gastrointest Liver Physiol 279: G511–G519, 2000Google Scholar
  93. 93.
    Vanden Berghe P, Molhoek S, Missiaen L, Tack J, Janssens J: Differential Ca(2 C ) signaling characteristics of inhibitory and excitatory myenteric motor neurons in culture. AmJ Physiol Gastrointest Liver Physiol 279: G1121–G1127, 2000Google Scholar
  94. 94.
    Malysz J, Donnelly G, Huizinga JD: Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 280: G439–G448, 2001Google Scholar
  95. 95.
    Taniyama K, Makimoto N, Furuichi A, Sakurai-Yamashita Y, Nagase Y, Kaibara M, Kanematsu T: Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroyxtryptamine 4 receptor, in gastrointestinal motility. J Gastroenterol 35: 575–582, 2000Google Scholar
  96. 96.
    Pan H, Gershon MD: Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine. J Neurosci 20: 3295–3309, 2000Google Scholar
  97. 97.
    Schneider DA, Galligan JJ: Presynaptic nicotinic acetylcholine receptors in the myenteric plexus of guinea pig intestine. Am J Physiol Gastrointest liver Physiol 279: G528–G535, 2000Google Scholar
  98. 98.
    Shahbazian A, Holzer P: Regulation of guinea pig intestinal peristalsis by endogenous endothelin acting at ETB receptors. Gastroenterol 119: 80–88, 2000Google Scholar
  99. 99.
    Oue T, Puri P: Altered endothelin-3 and endothelin-B receptor mRNA expression in Hirschsprung's disease. J Pediatr Surg 34: 1257–1260, 1999Google Scholar
  100. 100.
    Vanner S: Myenteric Neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Gastrointest Liver Physiol 279: G380–G387, 2000Google Scholar
  101. 101.
    Vaughan CJ, Aherne AM, Lane E, Power O, Carey RM, O'Connell DP: Identification and regional distribution of the dopamine D(1A) receptor in the gastrointestinal tract. Am J Physiol Regul Integr Comp Physiol 279: R599–R609, 2000Google Scholar
  102. 102.
    Kuemmerle JF, Teng B: Regulation of IGFBP-4 levels in human intestinal muscle by an IGF-I-activated, confluence-dependent pro-tease. Am J Gastrointest Liver Physiol 279: G975–G982, 2000Google Scholar
  103. 103.
    Hou YT, Xin XP, Zimmerman EM: Regulation of insulin-like growth factor binding protein-5 mRNA abundance in rat intestinal smooth muscle. Biochem Biophys Res Comm 275: 422–427, 2000Google Scholar
  104. 104.
    Hernandes L, Zucoloto S, Alvares EP: Effect of myenteric denervation on intestinal epithelium proliferation and migration of suckling and weanling rats. Cell Prolif 33: 127–138, 2000Google Scholar
  105. 105.
    Donnelly G, Jackson TD, Ambrous K, Ye J, Safdar A, Farraway L, Huizinga JD: The myogenic component in distention-induced peristalsis in the guinea pig small intestine. AmJ Gastrointest Liver Physiol 280: G491–G500, 2001Google Scholar
  106. 106.
    Feinle Cc, Grundy D, Fried M: Modulation of gastric distension-induced sensations by small intestinal receptors. Am J Gastrointest Liver Physiol 280: G51–G57, 2001Google Scholar
  107. 107.
    Torrents D, Vergara P: In vivo changes in the intestinal reflexes and the response to CCK in the inflamed small intestine of the rat. Am J Physiol Gastrointest Liver Physiol 279: G551, 2000Google Scholar
  108. 108.
    Sternini C, Wong H, Pham T, De Giorgio R, Miller LJ, Kuntz SM, Reeve JR, Walsh JH, Raybould HE: Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterol 117: 1136–1146, 1999Google Scholar
  109. 109.
    Keller J, Groger G, Cherian L, Gunther B, Layer P: Circadian coupling between pancreatic secretion and intestinal motility in humans. Am J Gastrointest Liver Physiol 280: G273–G278, 2001Google Scholar
  110. 110.
    Tache Y, Martinez V, Million M, Wang L: Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Gastrointest Liver Physiol 280: G173–G177, 2001Google Scholar
  111. 111.
    Chiba T, Thomforde GM, Kost LJ, Allen RG, Phillips SF: Motilides accelerate regional gastrointestinal transit in the dog. Aliment Pharmacol Ther 14: 955–960, 2000Google Scholar
  112. 112.
    Degen LP, Peng F, Collet A, Rossi L, Ketterer S, Serrano Y, Larsen F, Beglinger C: Blockade of GRP receptors inhibits gastric emptying and gallbladder contraction but accelerates small intestinal transit. Gastroenterology 120: 361–368, 2001Google Scholar
  113. 113.
    Zhao X-T, Wang L, Lin HC: Slowing of intestinal transit by fat depends on naloxone-blockade efferent, opioid pathway. Am J Gastrointest Liver Physiol G866–G870, 2000Google Scholar
  114. 114.
    Muscara MN, Wallace JL: Nitric oxide. V. Therapeutic potential of nitric oxide donors and inhibitors. Am J Physiol 276: G1313–G1316, 1999Google Scholar
  115. 115.
    Gauthier R, Laprise P, Cardin E, Harnois C, Plourde A, Reed JC, Vezina A, Vachon PH: Differential sensitivity to apoptosis between the human small and large intestinal mucosae: linkage with segment-specific regulation of BCL-2 homologs and involvement of signaling pathways. J Cell Biochem 82: 339–355, 2001Google Scholar
  116. 116.
    Saban R, Nguyen N, Saban MR, Gerard NP, Pasricha PJ: Nerve-mediated motility of ileal segments isolated from NK (1) receptor knockout mice. Am J Physiol 277: G1173–G1179, 1999Google Scholar
  117. 117.
    Mourad FH, Nassar CF: Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 47: 382–386, 2000Google Scholar
  118. 118.
    Schmidt PT, Rickelt LF, Holst JJ: Tachykinins stimulate release of peptide hormones (glucagon-like peptide-1) and paracrine (somatostatin) and neurotransmitter (vasoactive intestinal polypeptide) from porcine ileum through NK-1 receptors. Dig Dis Sci 44: 1273–1281, 1999Google Scholar
  119. 119.
    Lodato RF, Khan AR, Zembowicz MJ, Weisbrodt NW, Pressley TA, Li YF, Lodato JA, Zembowicz A, Moody FG: Roles of IL-1 and TNF in the decreased ileal muscle contractility induced by lipopolysaccharide. Am J Physiol 276: G1356–G1362, 1999Google Scholar
  120. 120.
    Shi XZ, Sarna SK: Differential inflammatory modulation of canine ileal longitudinal and circular muscle cells. Am J Physiol 277: G341–G350, 1999Google Scholar
  121. 121.
    Heinemann A, Holzer P: Stimulant action of pituitary adenylate cyclase-activating peptide on normal and drug-compromised peristalsis in the guinea-pig intestine. Br J Pharmacol 127: 763–771, 1999Google Scholar
  122. 122.
    Fox-Threlkeld JA, McDonald TJ, Woskowska Z, Iesaki K, Danial EE: Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. J Pharmacol Exp Ther 290: 66–75, 1999Google Scholar
  123. 123.
    Olsson C, Holmgren S: The control of gut motility. Comp Biochem Physiol 128: 481–503, 2001Google Scholar
  124. 124.
    Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH, Rae JL: A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterol 117: 900–905, 1999Google Scholar
  125. 125.
    Kuemmerle JF: Motility disorders of the small intestine. J Clin Gastroenterol 31: 276–281, 2000Google Scholar
  126. 126.
    Qian LW, Peters LJ, Chen JD: Postprandial response of jejunal slow waves and mediation via cholinergic mechanism. Dig Dis Sci 44: 1506–1511, 1999Google Scholar
  127. 127.
    Picard C, Wysocki J, Fioramonti J, Griffiths NM: Intestinal and colonic motor alterations associated with irradiation-induced diarrhoea in rats. Neurogastroenterol Motil 13: 19–26, 2001Google Scholar
  128. 128.
    Schulze-Delrieu K: Visual parameters define the phase and the load of contractions in isolated guinea pig ileum. Am J Physiol 276: G1417–G1424, 1999Google Scholar
  129. 129.
    Dannoura AH, Berriot-Varoqueaux N, Amati P, Abadie V, Verthier N, Schmitz J, Wetterau JR, Samson-Bouma ME, Aggerbeck LP: Anderson's disease: exclusion of apolipoprotein and intracellular lipid transport genes. Arterioscler Thromb Vasc Biol 19: 2494–2508, 1999Google Scholar
  130. 130.
    Josephs MD, Cheng G, Ksontini R, Moldawer LL, Hocking MP: Products of cyclooxygenase-2 catalysis regulate postoperative bowel motility. J Surg Res 86: 50–54, 1999Google Scholar
  131. 131.
    De Winter BY, Boeckxstaens GE, De Man JG, Moreels TG, Schuurkes JA, Peeters TL, Herman AG, Pelckmans PA: Effect of different prokinetic agents and a novel enterokinetic agent on post-operative ileus in rats. Gut 45: 713–718, 1999Google Scholar
  132. 132.
    Di Lorenzo C: Pseudo-obstruction: current approaches. Gastroenterol 116: 980–987, 1999Google Scholar
  133. 133.
    Seidel SA, Hedge SS, Bradshaw LA, Ladipo JK, Richards WO: Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol 277: G993–G999, 1999Google Scholar
  134. 134.
    Husebye E, Hellstrom PM, Sundler F, Chen J, Midtvedt T: Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Gastrointest Liver Physiol 280: G368–G380, 2001Google Scholar
  135. 135.
    Le Blay G, Blottiere HM, Ferrier L, Le Foll E, Bonnet C, Glamiche JP, Cherbut C: Short-chain fatty acids induce cytoskeletal and extra-cellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells. Dig Dis Sci 45: 1623–1630, 2000Google Scholar
  136. 136.
    Moreels TG, De Man JG, Bogers JJ, De Winter BY, Vrolix G, Herman AG, Van Marck EA, Pelckmans PA: Effect of Schistosoma mansoni-induced granulomatous inflammation on murine gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 280: G1030–G1042, 2001Google Scholar
  137. 137.
    Gay J, Fioramonti J. Garcia-Villar R, Bueno L: Enhanced intestinal motor response to cholecystokinin in post-Nippostrongylus brasiliensis-infected rats: modulation by CCK receptors and the vagus nerve. Neurogastroenterol Motil 13: 155–162, 2001Google Scholar
  138. 138.
    Peters HP, Bos M, Seebregts L, Akkermans LM, van Berge Henegouwen GP, Bol E, Mosterd WL, de Vries WR: Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology. AmJ Gastroenterol 94: 1570–1581, 1999Google Scholar
  139. 139.
    MacIntosh CG, Horowitz M, Verhagen MAMT, Smout AJPM, Wishart J, Morris H, Goble E, Morley JE, Chapman IM: Effect of small intestinal nutrient infusion on appetite, gastrointestinal hormone release, and gastric myoelectrical activity in young and older men. Am J Gastroenterol 96: 997–1007, 2001Google Scholar
  140. 140.
    Graff J, Brinch K, Madsen JL: Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol 21: 253–259, 2001Google Scholar
  141. 141.
    Chang CS, Yang SS, Kao CH, Yeh HZ, Chen GH: Small intestinal bacterial overgrowth versus antimicrobial capacity in patients with spontaneous bacterial peritonitis. Scand J Gastroenterol 36: 92–96, 2001Google Scholar
  142. 142.
    Abo M, Kono T, Wang Z, Chen JDZ: Intestinointestinal inhibitory reflexes. Effect of distension on intestinal slow waves. Dig dis Sci 46: 1177–1185, 2001Google Scholar
  143. 143.
    Booth CE, Kirkup AJ, Hicks GA, Humphrey PPA, Grundy D: Somatostatin sst2 receptor-mediated inhibition of mesenteric afferent nerves of the jejunum in the anesthetized rat. Gastroenterology 121: 358–369, 2001Google Scholar
  144. 144.
    Hierholzer C, Kalff JC, Chakraborty A, Watkins SC, Billiar TR, Bauer AJ, Tweardy DJ: Impaired gut contractility following hemorrhagic shock is accompanied by IL-6 and G-CSF production and neutrophil infiltration. Dig Dis Sci 46: 230–241, 2001Google Scholar
  145. 145.
    Plattner V, Leray V, Leclair M-D, Aube A-C, Cherbut C, Glamiche JP: Interleukin-8 increases acetylcholine response of rat intestinal segments. Aliment Pharmacol Ther 15: 1227–1232, 2001Google Scholar
  146. 146.
    Merle A, Delagrange P, Renard P, Lesieur D, Cuber JC, Roche M, Pellissier S: Effect of melatonin on motility pattern of small intestine in rats and its inhibition by melatonin receptor antagonist S 22153. J Pineal Res 2: 116–124, 2000Google Scholar
  147. 147.
    Goodrich ME, McGee DW: Regulation of mucosal B cell immunoglobulin secretion by intestinal epithelial cell-derived cytokines. Cytokine 10: 948–955, 1998Google Scholar
  148. 148.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G: Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10: 387–398, 1999Google Scholar
  149. 149.
    Sigurdsson L, Reyes J, Kocoshis SA, Mazariegos G, Abu-Elmagd KM, Bueno J, Di Lorenzo C: Intestinal transplantation in children with chronic intestinal pseudo-obstruction. Gut 45: 570–574, 1999Google Scholar
  150. 150.
    Ogino Y, Kobayashi E, Fujimura A: Comparison of cyclosporin A and tacrolimus concentrations in whole blood between jejunal and ileal transplanted rats. J Pharm Pharmacol 51: 811–815, 1999Google Scholar
  151. 151.
    Sudan DL, Kaufman SS, Shaw BW, Fox IJ, McCashland TM, Schafer DF, Radio SJ, Hinrichs SH, Vanderhood JA, Langnas AN: Isolated intestinal transplantation for intestinal failure. Am J Gastroenterol 95: 1506–1515, 2000Google Scholar
  152. 152.
    Kouwenhoven EA, Stein-Oakley AN, Jablonski P, de Bruin RW, Thomson NM: EGF and TGF-¯1 gene expression in chronically rejecting small bowel transplants. Dig Dis Sci 44: 1117–1123, 1999Google Scholar
  153. 153.
    Stuber E, Buschenfeld A, von Freier A, Arendt T, Folsch UR: Intestinal crypt cell apoptosis in murine acute graft versus host disease is mediated by tumour necrosis factor alpha and not by the FasL-Fas interaction: effect of pentoxifylline on the development of mucosal atrophy. Gut 45: 229–235, 1999Google Scholar
  154. 154.
    Golovkina TV, Sholmchik M, Hannum L, Chervonsky A: Organogenic role of B lymphocytes in mucosal immunity. Science 286: 1965–1968, 1999Google Scholar
  155. 155.
    Fujihashi K, Dohi T, Rennert PD, Yamamoto M, Koga T, Kiyono H, McGhee JR: Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci USA 98: 3310–3315, 2001Google Scholar
  156. 156.
    Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF: Regulated MIP-3®/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 280: G710–G719, 2001Google Scholar
  157. 157.
    Chang N, Uribe JM, Keely SJ, Calandrella S, Barrett KE: Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 281: G129–G137, 2001Google Scholar
  158. 158.
    Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT: GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Gastrointest Liver Physiol 279: G1249–G1256, 2000Google Scholar
  159. 159.
    Kudsk KA, Wu Y, Fukatsu K, Zarzaur BL, Johnson CD, Wang R, Hanna MK: Glutamine-enriched total pareenteral nutrition maintains intestinal interleukin-4 and mucosal immunoglobulin A levels. J Parent Enteral Nutr 24: 270–275, 2000Google Scholar
  160. 160.
    Dwinell MB, Lugering N, Eckmann L, Kagnoff MF: Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120: 49–59, 2001Google Scholar
  161. 161.
    Van Damme N, De Vos M, Baeten D, Demetter P, Mielants H, Verbruggen G, Cuvelier C, Veys EM, De Keyser F: Flowcytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis 60: 495–499, 2001Google Scholar
  162. 162.
    Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, Rivard N: Requirement of the MAPkinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol 277: G631–G641, 1999Google Scholar
  163. 163.
    Subramanian V, Meyer B, Evans GS: The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64: 11–18, 1998Google Scholar
  164. 164.
    Sun Z, Wang X, Lasson A, Bojesson A, Annborn M, Andersson R: Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand J Gastroenterol 36: 55–65, 2001Google Scholar
  165. 165.
    Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF: Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol 277: G810–G818, 1999Google Scholar
  166. 166.
    Fritsch C, Orian-Rousseaul V, Lefebvre O, Simon-Assmann P, Reimund JM, Duclos B, Kedinger M: Characterization of human intestinal stromal cell lines: response to cytokines and interactions with epithelial cells. Exp Cell Res 248: 391–406, 1999Google Scholar
  167. 167.
    Ku NO, Zhou X, Toivola DM, Omary MB: The cytoskeleton of digestive epithelia in health and disease. AmJ Physiol 277: G1108–G1137, 1999Google Scholar
  168. 168.
    Gutierrez JA, Perr HA: Mechanical stretch modulates TGF-beta 1 and alpha 1(I) collagen expression in fetal human intestinal smooth muscle cells. Am J Physiol 277: G1074–G1080, 1999Google Scholar
  169. 169.
    Schroder O, Hess S, Caspary WF, Stein J: Mediation of differentiating effects of butyrate on the intestinal cell line Caco-2 by transforming growth factor-beta 1. Eur J Nutr 38: 45–50, 1999Google Scholar
  170. 170.
    Itoh H, Hamasuna R, Kataoka H, Yamauchi M, Miyazawa K, Kitamura N, Koono M: Mouse hepatocyte growth factor activator gene: its expression not only in the liver but also in the gastrointestinal tract. Biochim Biophys Acta 1491: 295–302, 2000Google Scholar
  171. 171.
    Stern LE, Falcone RA, Kemp CJ, Braun MC, Erwin CR, Warner BW: Salivary epidermal growth factor and intestinal adaptation in male and female mice. Am J Physiol Gastrointest Liver Physiol 278: G871–G877, 2000Google Scholar
  172. 172.
    Jobin C, Holt L, Bradham CA, Streetz K, Brenner DA, Sartor RB: TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol 162: 4447–4454, 1999Google Scholar
  173. 173.
    Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Straatman JL, Hultgren SJ, Matrisian LM, Parks WC: Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117, 1999Google Scholar
  174. 174.
    Tian JQ, Quaroni A: Involvement of p21 (WAF1/Cip1) and p27 (Kip1) in intestinal epithelial cell differentiation. AmJ Cell Physiol 276: C1245–C1258, 1999Google Scholar
  175. 175.
    Zarrilli R, Pignata S, Apicella A, Di Popolo A, Memoli A, Ricchi P, Salzano S, Acquaviva AM: Cell cycle block at G1-S or G2-M phase correlates with differentiation of caco-2 cells: effect of constitutive insulin-like growth factor II expression. Gastroenterol 116: 1358–1366, 1999Google Scholar
  176. 176.
    Jehle PM, Fussgaenger RD, Blum WF, Angelus NK, Hoeflich A, Wolf E, Jungwirth RJ: Differential autocrine regulation of intestine epithelial cell proliferation and differentiation by insulin-like growth factor (IGF) system components. Horm Metab Res 31: 97–102, 1999Google Scholar
  177. 177.
    Menard D, Corriveau L, Beaulieu JF: Insulin modulates cellular proliferation in developing human jejunum and colon. Biol Neonate 75: 143–151, 1999Google Scholar
  178. 178.
    Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, Kedinger M: Involvement of T3Ralpha-and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology 116: 1367–1378, 1999Google Scholar
  179. 179.
    Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, Boulouha L, Louvard D, Jaisser F, Robine S: In vivo, villin is required for Ca(2 C )-dependent F-actin disruption in intestinal brush borders. J Cell Biol 146: 819–830, 1999Google Scholar
  180. 180.
    Rao JN, Li L, Golovina VA, Platoshyn O, Strauch ED, Yuan JX, Wang JY. Ca2C-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 280: C993–C1007, 2001Google Scholar
  181. 181.
    Berlanga-Acosta J, Playford RJ, Mandir N, Goodlad RA: Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut 48: 803–807, 2001Google Scholar
  182. 182.
    Foligne B, Aissaoui S, Senegas-Balas F, Cayuela C, Bernard P, Antoine J-M, Balas D: Changes in cell proliferation and differentiation of adult rat small intestine epithelium after adrenalectomy. Dig Dis Sci 46: 1236–1246, 2001Google Scholar
  183. 183.
    Sheppard KE, Li KX, Autelitano DJ: Corticosteroid receptors and 11beta-hydroxysteroid dehydrogenase isoforms in rat intestinal epithelia. Am J Physiol 277: G541–G547, 1999Google Scholar
  184. 184.
    Reuter BK, Wallace JL: Phosphodiesterase inhibitors prevent NSAID enteropathy independently of effects on TNF-alpha release. Am J Physiol 277: G847–G854, 1999Google Scholar
  185. 185.
    Xian CJ, Xu X, Mardell CE, Howarth GS, Byard RW, Moore DJ, Miettinen P, Read LC: Site-specific changes in transforming growth factor-alpha and-beta1 expression in colonic mucosa of adolescents with inflammatory bowel disease. Scand J Gastroenterol 34: 591–600, 1999Google Scholar
  186. 186.
    Clark DE: Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88: 807–814, 1999Google Scholar
  187. 187.
    Lin JH, Chiba M, Chen IW, Nishime JA, deLuna FA, Yamazaki M, Lin YJ: Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction. Drug Metab Dispos 27: 1187–1193, 1999Google Scholar
  188. 188.
    Yumoto R, Murakami T, Nakamoto Y, Hasegawa R, Nagai J, Takano M: Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J Pharmacol Exp Ther 289: 149–155, 1999Google Scholar
  189. 189.
    Hu M, Li Y, Davitt CM, Huang SM, Thummel K, Penman BW, Crespi CL: Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxidoreductase. Pharm Res 16: 1352–1359, 1999Google Scholar
  190. 190.
    Tavelin S, Milovic V, Ocklind G, Olsson S, Arthursson P: A conditionally immortalized epithelial cell line for studies of intestinal drug transport. J Pharmacol Exp Ther 290: 1212–1221, 1999Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Alan B.R. Thomson
    • 1
  • Laurie Drozdowski
    • 1
  • Claudiu Iordache
    • 1
  • Ben K.A. Thomson
    • 1
  • Severine Vermeire
    • 2
  • M. Tom Clandinin
    • 1
  • Gary Wild
    • 2
  1. 1.Nutrition and Metabolism Group, Division of Gastroenterology, Department of MedicineUniversity of AlbertaEdmontonAlberta
  2. 2.Division of Gastroenterology, Department of MedicineMcGill University Health Centre, MontréalQuebecCanada

Personalised recommendations