Digestive Diseases and Sciences

, Volume 48, Issue 8, pp 1565–1581 | Cite as

REVIEW: Small Bowel Review: Normal Physiology, Part 2

  • Alan B.R. Thomson
  • Laurie Drozdowski
  • Claudiu Iordache
  • Ben K.A. Thomson
  • Severine Vermeire
  • M. Tom Clandinin
  • Gary Wild
small bowel bowel physiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang X, Fogel R, Renehan WE: Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex. Am J Physiol 277: G79–G90, 1999Google Scholar
  2. 2.
    DeWitt RC, Kudsk KA: The gut's role in metabolism, mucosal barrier function, and gut immunology. Infect Dis Clin North 13: 465–481, 1999Google Scholar
  3. 3.
    Daugherty AL, Mrsny RJ: Transcellular uptake mechanisms of the intestinal epithelial barrier part one. Pharm Sci Technol Today 144–151, 1999Google Scholar
  4. 4.
    Karczewski J, Groot J: Molecular physiology and pathophysiology of tight junctions III. Tight junction regulation by intracellular messengers: differences in response within response within and between epithelia. Am J Physiol Gastrointest Liver Physiol 279: G660–G665, 2000Google Scholar
  5. 5.
    Nusrat A, Turner JR, Madara JL: Molecular physiology and patho-physiology of tight junctions IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279: G851–G857, 2000Google Scholar
  6. 6.
    Kurjak M, Fritsch R, Suar D, Schusdziarra V, Allescher HD: NO releases bombesin-like immunoreactivity from enteric synaptosomes by cross-activation of protein kinase A. Am J Physiol 276: G1521–G1530, 1999Google Scholar
  7. 7.
    Yu CF, Sanders MA, Basson MD: Human Caco-2 motility redistributes FAK and paxillin and activates p38 MAPK in a matrix-dependent manner. AmJ Physiol Gastrointest Liver Physiol 278: G952–G966, 2000Google Scholar
  8. 8.
    McKay DM, Botelho F, Ceponis PJ, Richards CD: Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. AmJ Physiol Gastrointest Liver Physiol 279: G1094–G1103, 2000Google Scholar
  9. 9.
    Ferruzza S, Scarino ML, Rotilio G, Ciriolo MR, Santaroni P, Muda AO, Sambuy Y: Copper treatment alters the permeability of tight junctions in cultured human intestinal Caco-2 cells. Am J Physiol 277: G1138–G1148, 1999Google Scholar
  10. 10.
    Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S: Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol 94: 200–207, 1999Google Scholar
  11. 11.
    Ferraris RP, Carey HV: Intestinal transport during fasting and malnutrition. Annu Rev Nutr 20: 195–219, 2000Google Scholar
  12. 12.
    Fihn B-M, Sjoqvist A, Jodal M: Permeability of the rat small intestinal epithelium along the villuscrypt axis: effects of glucose transport. Gastroenterol 119: 1029–1036, 2000Google Scholar
  13. 13.
    Rongione AJ, Kusske AM, Newton TR, Ashley SW, Zinner MJ, McFadden DW: EGF and TGF stimulate proabsorption of glucose and electrolytes by NaC/glucose cotransporter in awake canine model. Dig Dis Sci 46: 1740–1747, 2001Google Scholar
  14. 14.
    Banan A, Fields JZ, Zhang Y, Keshavarzian A: iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am J Physiol Gastrointest Liver Physiol 280: G1234–G1246, 2001Google Scholar
  15. 15.
    Marano CW, Garulacan LA, Ginanni B, Mullin JM: Pharbol ester treatment increases paracellular permeability across IEC-18 gastrointestinal epithelium in vitro. Dig Dis Sci 46: 1490–1499,2001Google Scholar
  16. 16.
    Benjamin MA, McKay DM, Yang P-C, Cameron H, Perdue MH: Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 47: 112–119, 2000Google Scholar
  17. 17.
    Meddings JB, Swain MG: Environmental stress-induced gastroin-testinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterol 119: 1019–1028, 2000Google Scholar
  18. 18.
    Iwata H, Matsushita M, Nishikimi N, Sakurai T, Nimura Y: Intestinal permeability is increased in patients with intermittent claudication. J Vasc Surg 31: 1003–1007, 2000Google Scholar
  19. 19.
    Menzies IS, Zuckerman MJ, Nukajam WS, Somasundaram SG, Murphy B, Jenkins AP, Crane RS, Gregory GG: Geography of intestinal permeability and absorption. Gut 44: 483–489, 1999Google Scholar
  20. 20.
    Suenaert P, Bulteel V, Hond ED, Hiele M, Peeters M, Monsuur F, Ghoos Y, Rutgeerts P: The effects of smoking and indomethacin on small intestinal permeability. Aliment Pharmacol Ther 14: 819–822, 2000Google Scholar
  21. 21.
    Kimura RE, Dy SA, Uhing MR, Beno DW, Jiyamapa VA, Lloyd-Still JD: The effects of high-dose ibuprofen and pancreatic enzymes on the intestine of the rat. J Pediatr Gastroenterol Nutr 29: 178–183, 1999Google Scholar
  22. 22.
    Den Hond E, Hiele M, Peeters M, Ghoos Y, Rutgeerts P: Effect of long-term oral glutamine supplements on small intestinal permeability in patients with Crohn's disease. J Parenter Enteral Nutr 23: 7–11, 1999Google Scholar
  23. 23.
    Plauth M, Schneider BH, Raible A, Hartmann F: Effects of vascular or luminal administration and of simulaneous glucose availability on glutamine utilization by isolated rat small intestine. Int J Colorectal Dis 14: 95–100, 1999Google Scholar
  24. 24.
    Weiss MD, DeMarco V, Strauss DM, Samuelson DA, Lane ME, Neu J: Glutamine synthetase: a key enzyme for intestinal epithelial differentiation? J Parenter Enteral Nutr 23: 140–146, 1999Google Scholar
  25. 25.
    Santos GC, Zucoloto S, Garcia SB: Endocrine cells in the denervated intestine. Int J Exp Pathol 81: 265–270, 2000Google Scholar
  26. 26.
    Rao JN, Li J, Li L, Bass BL, Wang JY: Differentiated intestinal cells exhibit increased migration through polyamines and myosin II. Am J Physiol 277: G1149–G1158, 1999Google Scholar
  27. 27.
    Ruthig DJ, Meckling-Gill KA: Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr 129: 1791–1798, 1999Google Scholar
  28. 28.
    Catanoso M, Lo Gullo R, Giofre MR, Pallio S, Tortora A, Lo Presti M, Frisina N, Bagnato G, Fries W: Gastrointestinal permeability is increased in patients with limited systemic sclerosis. Scand J Rheumatol 30: 77–81, 2001Google Scholar
  29. 29.
    Piena-Spoel M, Albers MJ, Ten Kate J, Tibboel D: Intestinal permeability in newborns with necrotizing enterocolitis and controls: does the sugar absorption test provide guidelines for the time to (re-)introduce enteral nutrition? J Pediatr Surg 36: 587–592, 2001Google Scholar
  30. 30.
    Thanou M, Verhoef JC, Marbach P, Junginger HE: Intestinal absorption of octreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 89: 951–957, 2000Google Scholar
  31. 31.
    Nissan A, Ziv E, Kidron M, Bar-On H, Friedman G, Hyam E, Eldor A: Intestinal absorption of low molecular weight heparin in animals and human subjects. Haemostasis 30: 225–232, 2000Google Scholar
  32. 32.
    Sugi K, Musch MW, Di A, Nelson DJ, Chang EB: Oxidants potentiate Ca 2 C-and cAMP-stimulated Cl¡ secretion in intestinal epithelial T84 cells. Gastroenterology 120: 89–98, 2001Google Scholar
  33. 33.
    Roche HM, Terres AM, Black IB, Gibney MJ, Keleher D: Fatty acids and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut 48: 797–802, 2001Google Scholar
  34. 34.
    Valle L, Pol O, Puig MM: Intestinal inflammation enhances the inhibitory effects of opioids on intestinal permeability in mice. J Pharmacol Exp Ther 296: 378–387, 2001Google Scholar
  35. 35.
    Mochizuki K, Suruga K, Yagi E, Takase S, Goda T: The expression of PPAR-associated genes is modulated through postnatal development of PPAR subtypes in the small intestine. Biochim Biophys Acta 1531: 68–76, 2001Google Scholar
  36. 36.
    Wells CL, Jechorek RP, Erlandsen SL: Effect of oral genistein and isoflavone-free diet on cecal flora and bacterial translocation in antibiotic-treated mice. J Parenter Enteral Nutr 24: 56–60, 2000Google Scholar
  37. 37.
    Dickinson E, Tuncer R, Nadler E, Boyle P, Alber S, Watkins S, Ford H: NOX, a novel nitric oxide scavenger, reduces bacterial translocation in rats after endotoxin challenge. Am J Physiol 277: G1281–G1287, 1999Google Scholar
  38. 38.
    Haskel Y, Udassin R, Freund HR, Zhang JM, Hanani M: Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility. J Parenter Enternal Nutr 25: 60–64, 2001Google Scholar
  39. 39.
    Wijesinghe LD, Gilliam AD, MacFie J: Does intestinal translocation of bacteria affect the short, intermediate or long-term mortality of patients undergoing laparotomy? Nutr Res 21: 9–14, 2001Google Scholar
  40. 40.
    Kamaras J, Murrell WG: Intestinal epithelial damage in sids babies and its similarity to that caused by bacterial toxins in the rabbit. Pathol 33: 197–203, 2001Google Scholar
  41. 41.
    Sanderson IR: The physiochemical environment of the neonatal intestine. Am J Clin Nutr 69: 1028S–1034S, 1999Google Scholar
  42. 42.
    Siafakas CG, Anatolitou F, Fusunyan RD, Walker WA, Sanderson IR: Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr Res 45: 652–657, 1999Google Scholar
  43. 43.
    Ramalho-Santos M, Melton DA, McMahon AP: Hedgehog signals regulate multiple aspects of gastrointestinal development. Develop 127: 2763–2772, 2000Google Scholar
  44. 44.
    Vachon PH, Cardin E, Harnois C, Reed JC, Plourde A, Vezina A: Early acquisition of bowel segment-specific Bcl-2 homolog expression profiles during development of the human ileum and colon. Histol Histopathol 16: 497–510, 2001Google Scholar
  45. 45.
    Nankervis CA, Dunaway DJ, Miller CE: Endothelin ETA and ETB receptors in postnatal intestine. Am J Physiol Gastrointest Liver Physiol 280: G555–G562, 2001Google Scholar
  46. 46.
    Ewtushik AL, Bertolo RFP, Ball RO: Intestinal development of early-weaned piglets receiving diets supplemented with selected amino acids or polyamines. Can J Anim Sci 80: 653–662, 2000Google Scholar
  47. 47.
    Morin MJ, Karr SM, Faris RA, Gruppuso PA: Developmental variability in expression and regulation of inducible nitric oxide synthase in rat intestine. Am J Physiol Gastrointest Liver Physiol 281: G552–G559, 2001Google Scholar
  48. 48.
    Duluc I, Hoff C, Kedinger M, Freund J-N: Differentially expressed endoderm and mesenchyme genes along the fetal rat intestine. Genesis 29: 55–59, 2001Google Scholar
  49. 49.
    Clatworthy JP, Subramanian V: Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech Dev 101: 3–9, 2001Google Scholar
  50. 50.
    Booth C, O'shea JA, Potten CS: Maintenance of functional stem cells in isolated and cultured adult intestinal epithelium. Exp Cell Res 249: 359–366, 1999Google Scholar
  51. 51.
    Yamada S, Kojima H, Fujimiya M, Nakamura T, Kashiwagi A, Kikkawa R: Differentiation of immature enterocytes into enteroendocrine cells by Pdx1 overexpression. Am J Physiol Gastrointest Liver Phsiol 281: G229–G236, 2001Google Scholar
  52. 52.
    Wang H, Lu S, Du J, Yao Y, Berschneider HM, Black DD: Regulation of apolipoprotein secretion by long-chain polyunsaturated fatty acids in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 280: G1137–G1144, 2001Google Scholar
  53. 53.
    Sheng H, Shao J, DuBois RN: Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem 276: 14498–4504, 2001Google Scholar
  54. 54.
    Chang Q, Tepperman BL: The role of protein kinase C isozymes in TNF-®-induced cytotoxicity to a rat intestinal epithelial cell line. Am J Physiol Gastrointest Liver Physiol 280: C572–C583,2001Google Scholar
  55. 55.
    Chiu T, Rozengurt E. PKD in intestinal epithelial cells: rapid activation by phorbol esters, LPA, and angiotensin through PKC. Am J Physiol Cell Physiol 280: C929–C942, 2001Google Scholar
  56. 56.
    Krasinski SD, Wering HMV, Tannemaat MR, Grand RJ: differential activation of intestinal gene promoters: functional interactions between GATA-5 and HNF-1®. Am J Physiol Gastrointest Liver Physiol 281: G69–G84, 2001Google Scholar
  57. 57.
    Hori M, Kita M, Torihashi S, Miyamoto S, Won K-J, Sato K, Ozaki H, Karaki H: Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 280: G930–G938, 2001Google Scholar
  58. 58.
    Blikslager AT, Pell SM, Young KM: PGE2 triggers recovery of transmucosal resistance via EP receptor cross talk in porcine ischemia-injured ileum. Am J Physiol Gastrointest Liver Physiol 281: G375–G381, 2001Google Scholar
  59. 59.
    Qu XW, Wang H, De Plaen IG, Rozenfeld RA, Hsueh W: Neuronal nitric oxide synthase (NOS) regulates the expression of inducible NOS in rat small intestine via modulation of nuclear factor kappa B. FASEB J 15: 439–446, 2001Google Scholar
  60. 60.
    Potoka DA, Nadler EP, Zhou X, Zhange X-R, Upperman JS, Ford HR. Inhibition of NF-KB by IKB prevents cytokine-induced NO production and promotes enterocyte apoptosis in vitro. Shock 14: 366–373, 2000Google Scholar
  61. 61.
    Li L, Rao JN, Bass BL, Wang J-Y: NF-KB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 280: G992–G1004,2001Google Scholar
  62. 62.
    Renehan AG, Bach SP, Potten CS: The relevance of apoptosis for cellular homeostasis and tumorigenesis in the intestine. Can J Gastroenterol 15: 166–176, 2001Google Scholar
  63. 63.
    Fujimoto K, Iwakiri R, Utsumi H, Kojima M, Ishibashi S, Wu B, Sakata H, Noda T: Effect of the central nervous system on mucosal growth and apoptosis in the small intestine. Digestion 63: 108–111, 2001Google Scholar
  64. 64.
    Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J: Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 12: 147–155, 2001Google Scholar
  65. 65.
    Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG: The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 275: 4499–4506, 2000Google Scholar
  66. 66.
    Moucadel V, Soubeyran P, Vasseur S, Dusetti NJ, Dagorn JC, Iovanna JL: Cdx1 promotes cellular growth of epithelial intestinal cells through induction of the secretory protein PAP1. Eur J Cell Biol 80: 156–163, 2001Google Scholar
  67. 67.
    Park J, Schulz S, Waldman SA: Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterol 119: 89–96, 2000Google Scholar
  68. 68.
    Obach RS, Zhang QY, Dunbar D, Kaminsky LS: Metabolic characterization of the major human small intestinal cytochrome p450s. Drug Metab Dispos 29: 347–352, 2001Google Scholar
  69. 69.
    Bertilsson PM, Olsson P, Magnusson KE: Cytokines influence mRNA expression of cytochrome P450 3A4 and MDRI in intestinal cells. J Pharm Sci 90: 638–646, 2001Google Scholar
  70. 70.
    Hashizume T, Imaoka S, Hiroi T, Terauchi Y, Fujii T, Miyazaki H, Kamataki T, Funae Y, cDNA cloning and expression of a novel cytochrome p450 (cyp4f12) from human small intestine. Biochem Biophys Res Commun 280: 1135–1141, 2001Google Scholar
  71. 71.
    Juul SE, Ledbetter DL, Joyce AE, Dame C, Christensen RD, Zhao Y, DeMarco V: Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut 49: 182–189, 2001Google Scholar
  72. 72.
    Jonas CR, Farrell CL, Scully S, Eli A, Estivariz CF, Gu LH, Jones DP, Ziegler TR: Enteral nutrition and keratinocyte growth factor regulate expression of glutathione-related enzyme messenger RNAs in rat intestine. J Parenter Enteral Nutr 24: 67–75, 2000Google Scholar
  73. 73.
    Ghatei MA, Goodlad RA, Taheri S, Mandir N, Brynes AE, Jordinson M, Bloom SR: Proglucagon-derived peptides in intestinal epithelial proliferation. Glucagon-like peptide-2 is a major mediator of intestinal epithelial proliferation in rats. Dig Dis Sci 46: 1255–1263, 2001Google Scholar
  74. 74.
    Liu L, Turner JR, Yu Y, Khan AJ, Jaszewski R, Fligiel SEG, Majumdar APN: Differential expression of EGFR during early reparative phase of the gastric mucosa between young and aged rats. Am J Gastrointest Liver Physiol 275: G943–G950, 1998Google Scholar
  75. 75.
    Gentili C, Boland R, de Boland AR: PTH stimulated PL Cbeta and PL Cgamma isoenzymes in rat enterocytes: influence of ageing. Cell Signal 13: 131–138, 2001Google Scholar
  76. 76.
    Iwakiri D Podolsky DK: A silence inhibitor confers specific expression of intestinal trefoil factor in gobletlike cell lines. Am J Physiol Gastrointest Liver Physiol 280: G1114–G1123, 2001Google Scholar
  77. 77.
    Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH: Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280: C1540–C1554, 2001Google Scholar
  78. 78.
    Cowen T, Johnson RJR, Soubeyre V, Santer RM: Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 47: 653–660, 2000Google Scholar
  79. 79.
    Sandstrom O, El-Salhy M: Human rectal endocrine cells and aging. Mech Ageing Dev 108: 219–226, 1999Google Scholar
  80. 80.
    Brogna A, Ferrara R, Bucceri AM, Lanteri E, Catalano F: Influence of aging on gastrointestinal transit time. An ultrasonographic and radiologic study. Invest Radiol 34: 357–359, 1999Google Scholar
  81. 81.
    Kirkup AJ, Brunsden AM, Grundy D: Receptors and transmission in the brain-gut axis: potential for novel therapies I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280: G787–G794, 2001Google Scholar
  82. 82.
    Blackshaw LA: Receptors and transmission in the brain-gut axis: potential for novel therapies IV. GABAB receptors in the brain-gastroesophageal axis. Am J Physiol Gastrointest Liver Physiol 281: G311–G315, 2001Google Scholar
  83. 83.
    Bercik P, Bouley L, Dutoit P, Blum AL, Kucera P: Quantitative analysis of intestinal motor patterns: spatiotemporal organization of nonneural pacemaker sites in the rat ileum. Gastroenterology 119: 386–394, 2000Google Scholar
  84. 84.
    Ward SM, Sanders KM: Interstitial cells of cajal: primary targets of enteric motor innervation. Anat Rec 262: 125–135, 2001Google Scholar
  85. 85.
    Epperson A, Hatton WJ, Callaghan B, Doherty P, Walker RL, Sanders KM, Ward SM, Horowitz B: Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am J Physiol Cell Physiol 279: C529–C539, 2000Google Scholar
  86. 86.
    Der T, Bercik P, Donnelly G, Jackson T, Berezin I, Collins SM, Huizinga JD: Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology 119: 1590–1599, 2000Google Scholar
  87. 87.
    Sharkey KA, Kroese AB: Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. Anat Rec 262: 79–90, 2001Google Scholar
  88. 88.
    Miller FH, Kline MJ, Vanagunas AD: Detection of bleeding due to small bowel cholesterol emboli using helical CT examination in gastrointestinal bleeding of obscure origin. Am J Gastroenterol 94: 3623–3625, 1999Google Scholar
  89. 89.
    Kenny SE, Connell G, Woodward MN, Lloyd DA, Gosden CM, Edgar DH, Vaillant C: Ontogeny of interstitial cells of Cajal in the human intestine. J Pediatr Surg 34: 1241–1247, 1999Google Scholar
  90. 90.
    Torihashi S, Nishi K, Tokutomi Y, Nishi T, Ward S, Sanders KM: Blockade of kit signaling induces transdifferentiation of interstitial cels of cajal to a smooth muscle phenotype. Gastroenterology 117: 140–148, 1999Google Scholar
  91. 91.
    Ward SM, Ordog T, Bayguinov JR, Horowitz B, Epperson A, Shen L, Westphal H, Sanders KM: Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterol 117: 584–594, 1999Google Scholar
  92. 92.
    Blennerhassett MG, Lourenssen S: Neural regulation of intestinal smooth muscle growth in vitro. Am J Physiol Gastrointest Liver Physiol 279: G511–G519, 2000Google Scholar
  93. 93.
    Vanden Berghe P, Molhoek S, Missiaen L, Tack J, Janssens J: Differential Ca(2 C ) signaling characteristics of inhibitory and excitatory myenteric motor neurons in culture. AmJ Physiol Gastrointest Liver Physiol 279: G1121–G1127, 2000Google Scholar
  94. 94.
    Malysz J, Donnelly G, Huizinga JD: Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 280: G439–G448, 2001Google Scholar
  95. 95.
    Taniyama K, Makimoto N, Furuichi A, Sakurai-Yamashita Y, Nagase Y, Kaibara M, Kanematsu T: Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroyxtryptamine 4 receptor, in gastrointestinal motility. J Gastroenterol 35: 575–582, 2000Google Scholar
  96. 96.
    Pan H, Gershon MD: Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine. J Neurosci 20: 3295–3309, 2000Google Scholar
  97. 97.
    Schneider DA, Galligan JJ: Presynaptic nicotinic acetylcholine receptors in the myenteric plexus of guinea pig intestine. Am J Physiol Gastrointest liver Physiol 279: G528–G535, 2000Google Scholar
  98. 98.
    Shahbazian A, Holzer P: Regulation of guinea pig intestinal peristalsis by endogenous endothelin acting at ETB receptors. Gastroenterol 119: 80–88, 2000Google Scholar
  99. 99.
    Oue T, Puri P: Altered endothelin-3 and endothelin-B receptor mRNA expression in Hirschsprung's disease. J Pediatr Surg 34: 1257–1260, 1999Google Scholar
  100. 100.
    Vanner S: Myenteric Neurons activate submucosal vasodilator neurons in guinea pig ileum. Am J Gastrointest Liver Physiol 279: G380–G387, 2000Google Scholar
  101. 101.
    Vaughan CJ, Aherne AM, Lane E, Power O, Carey RM, O'Connell DP: Identification and regional distribution of the dopamine D(1A) receptor in the gastrointestinal tract. Am J Physiol Regul Integr Comp Physiol 279: R599–R609, 2000Google Scholar
  102. 102.
    Kuemmerle JF, Teng B: Regulation of IGFBP-4 levels in human intestinal muscle by an IGF-I-activated, confluence-dependent pro-tease. Am J Gastrointest Liver Physiol 279: G975–G982, 2000Google Scholar
  103. 103.
    Hou YT, Xin XP, Zimmerman EM: Regulation of insulin-like growth factor binding protein-5 mRNA abundance in rat intestinal smooth muscle. Biochem Biophys Res Comm 275: 422–427, 2000Google Scholar
  104. 104.
    Hernandes L, Zucoloto S, Alvares EP: Effect of myenteric denervation on intestinal epithelium proliferation and migration of suckling and weanling rats. Cell Prolif 33: 127–138, 2000Google Scholar
  105. 105.
    Donnelly G, Jackson TD, Ambrous K, Ye J, Safdar A, Farraway L, Huizinga JD: The myogenic component in distention-induced peristalsis in the guinea pig small intestine. AmJ Gastrointest Liver Physiol 280: G491–G500, 2001Google Scholar
  106. 106.
    Feinle Cc, Grundy D, Fried M: Modulation of gastric distension-induced sensations by small intestinal receptors. Am J Gastrointest Liver Physiol 280: G51–G57, 2001Google Scholar
  107. 107.
    Torrents D, Vergara P: In vivo changes in the intestinal reflexes and the response to CCK in the inflamed small intestine of the rat. Am J Physiol Gastrointest Liver Physiol 279: G551, 2000Google Scholar
  108. 108.
    Sternini C, Wong H, Pham T, De Giorgio R, Miller LJ, Kuntz SM, Reeve JR, Walsh JH, Raybould HE: Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterol 117: 1136–1146, 1999Google Scholar
  109. 109.
    Keller J, Groger G, Cherian L, Gunther B, Layer P: Circadian coupling between pancreatic secretion and intestinal motility in humans. Am J Gastrointest Liver Physiol 280: G273–G278, 2001Google Scholar
  110. 110.
    Tache Y, Martinez V, Million M, Wang L: Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Gastrointest Liver Physiol 280: G173–G177, 2001Google Scholar
  111. 111.
    Chiba T, Thomforde GM, Kost LJ, Allen RG, Phillips SF: Motilides accelerate regional gastrointestinal transit in the dog. Aliment Pharmacol Ther 14: 955–960, 2000Google Scholar
  112. 112.
    Degen LP, Peng F, Collet A, Rossi L, Ketterer S, Serrano Y, Larsen F, Beglinger C: Blockade of GRP receptors inhibits gastric emptying and gallbladder contraction but accelerates small intestinal transit. Gastroenterology 120: 361–368, 2001Google Scholar
  113. 113.
    Zhao X-T, Wang L, Lin HC: Slowing of intestinal transit by fat depends on naloxone-blockade efferent, opioid pathway. Am J Gastrointest Liver Physiol G866–G870, 2000Google Scholar
  114. 114.
    Muscara MN, Wallace JL: Nitric oxide. V. Therapeutic potential of nitric oxide donors and inhibitors. Am J Physiol 276: G1313–G1316, 1999Google Scholar
  115. 115.
    Gauthier R, Laprise P, Cardin E, Harnois C, Plourde A, Reed JC, Vezina A, Vachon PH: Differential sensitivity to apoptosis between the human small and large intestinal mucosae: linkage with segment-specific regulation of BCL-2 homologs and involvement of signaling pathways. J Cell Biochem 82: 339–355, 2001Google Scholar
  116. 116.
    Saban R, Nguyen N, Saban MR, Gerard NP, Pasricha PJ: Nerve-mediated motility of ileal segments isolated from NK (1) receptor knockout mice. Am J Physiol 277: G1173–G1179, 1999Google Scholar
  117. 117.
    Mourad FH, Nassar CF: Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 47: 382–386, 2000Google Scholar
  118. 118.
    Schmidt PT, Rickelt LF, Holst JJ: Tachykinins stimulate release of peptide hormones (glucagon-like peptide-1) and paracrine (somatostatin) and neurotransmitter (vasoactive intestinal polypeptide) from porcine ileum through NK-1 receptors. Dig Dis Sci 44: 1273–1281, 1999Google Scholar
  119. 119.
    Lodato RF, Khan AR, Zembowicz MJ, Weisbrodt NW, Pressley TA, Li YF, Lodato JA, Zembowicz A, Moody FG: Roles of IL-1 and TNF in the decreased ileal muscle contractility induced by lipopolysaccharide. Am J Physiol 276: G1356–G1362, 1999Google Scholar
  120. 120.
    Shi XZ, Sarna SK: Differential inflammatory modulation of canine ileal longitudinal and circular muscle cells. Am J Physiol 277: G341–G350, 1999Google Scholar
  121. 121.
    Heinemann A, Holzer P: Stimulant action of pituitary adenylate cyclase-activating peptide on normal and drug-compromised peristalsis in the guinea-pig intestine. Br J Pharmacol 127: 763–771, 1999Google Scholar
  122. 122.
    Fox-Threlkeld JA, McDonald TJ, Woskowska Z, Iesaki K, Danial EE: Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. J Pharmacol Exp Ther 290: 66–75, 1999Google Scholar
  123. 123.
    Olsson C, Holmgren S: The control of gut motility. Comp Biochem Physiol 128: 481–503, 2001Google Scholar
  124. 124.
    Farrugia G, Holm AN, Rich A, Sarr MG, Szurszewski JH, Rae JL: A mechanosensitive calcium channel in human intestinal smooth muscle cells. Gastroenterol 117: 900–905, 1999Google Scholar
  125. 125.
    Kuemmerle JF: Motility disorders of the small intestine. J Clin Gastroenterol 31: 276–281, 2000Google Scholar
  126. 126.
    Qian LW, Peters LJ, Chen JD: Postprandial response of jejunal slow waves and mediation via cholinergic mechanism. Dig Dis Sci 44: 1506–1511, 1999Google Scholar
  127. 127.
    Picard C, Wysocki J, Fioramonti J, Griffiths NM: Intestinal and colonic motor alterations associated with irradiation-induced diarrhoea in rats. Neurogastroenterol Motil 13: 19–26, 2001Google Scholar
  128. 128.
    Schulze-Delrieu K: Visual parameters define the phase and the load of contractions in isolated guinea pig ileum. Am J Physiol 276: G1417–G1424, 1999Google Scholar
  129. 129.
    Dannoura AH, Berriot-Varoqueaux N, Amati P, Abadie V, Verthier N, Schmitz J, Wetterau JR, Samson-Bouma ME, Aggerbeck LP: Anderson's disease: exclusion of apolipoprotein and intracellular lipid transport genes. Arterioscler Thromb Vasc Biol 19: 2494–2508, 1999Google Scholar
  130. 130.
    Josephs MD, Cheng G, Ksontini R, Moldawer LL, Hocking MP: Products of cyclooxygenase-2 catalysis regulate postoperative bowel motility. J Surg Res 86: 50–54, 1999Google Scholar
  131. 131.
    De Winter BY, Boeckxstaens GE, De Man JG, Moreels TG, Schuurkes JA, Peeters TL, Herman AG, Pelckmans PA: Effect of different prokinetic agents and a novel enterokinetic agent on post-operative ileus in rats. Gut 45: 713–718, 1999Google Scholar
  132. 132.
    Di Lorenzo C: Pseudo-obstruction: current approaches. Gastroenterol 116: 980–987, 1999Google Scholar
  133. 133.
    Seidel SA, Hedge SS, Bradshaw LA, Ladipo JK, Richards WO: Intestinal tachyarrhythmias during small bowel ischemia. Am J Physiol 277: G993–G999, 1999Google Scholar
  134. 134.
    Husebye E, Hellstrom PM, Sundler F, Chen J, Midtvedt T: Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Gastrointest Liver Physiol 280: G368–G380, 2001Google Scholar
  135. 135.
    Le Blay G, Blottiere HM, Ferrier L, Le Foll E, Bonnet C, Glamiche JP, Cherbut C: Short-chain fatty acids induce cytoskeletal and extra-cellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells. Dig Dis Sci 45: 1623–1630, 2000Google Scholar
  136. 136.
    Moreels TG, De Man JG, Bogers JJ, De Winter BY, Vrolix G, Herman AG, Van Marck EA, Pelckmans PA: Effect of Schistosoma mansoni-induced granulomatous inflammation on murine gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 280: G1030–G1042, 2001Google Scholar
  137. 137.
    Gay J, Fioramonti J. Garcia-Villar R, Bueno L: Enhanced intestinal motor response to cholecystokinin in post-Nippostrongylus brasiliensis-infected rats: modulation by CCK receptors and the vagus nerve. Neurogastroenterol Motil 13: 155–162, 2001Google Scholar
  138. 138.
    Peters HP, Bos M, Seebregts L, Akkermans LM, van Berge Henegouwen GP, Bol E, Mosterd WL, de Vries WR: Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology. AmJ Gastroenterol 94: 1570–1581, 1999Google Scholar
  139. 139.
    MacIntosh CG, Horowitz M, Verhagen MAMT, Smout AJPM, Wishart J, Morris H, Goble E, Morley JE, Chapman IM: Effect of small intestinal nutrient infusion on appetite, gastrointestinal hormone release, and gastric myoelectrical activity in young and older men. Am J Gastroenterol 96: 997–1007, 2001Google Scholar
  140. 140.
    Graff J, Brinch K, Madsen JL: Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol 21: 253–259, 2001Google Scholar
  141. 141.
    Chang CS, Yang SS, Kao CH, Yeh HZ, Chen GH: Small intestinal bacterial overgrowth versus antimicrobial capacity in patients with spontaneous bacterial peritonitis. Scand J Gastroenterol 36: 92–96, 2001Google Scholar
  142. 142.
    Abo M, Kono T, Wang Z, Chen JDZ: Intestinointestinal inhibitory reflexes. Effect of distension on intestinal slow waves. Dig dis Sci 46: 1177–1185, 2001Google Scholar
  143. 143.
    Booth CE, Kirkup AJ, Hicks GA, Humphrey PPA, Grundy D: Somatostatin sst2 receptor-mediated inhibition of mesenteric afferent nerves of the jejunum in the anesthetized rat. Gastroenterology 121: 358–369, 2001Google Scholar
  144. 144.
    Hierholzer C, Kalff JC, Chakraborty A, Watkins SC, Billiar TR, Bauer AJ, Tweardy DJ: Impaired gut contractility following hemorrhagic shock is accompanied by IL-6 and G-CSF production and neutrophil infiltration. Dig Dis Sci 46: 230–241, 2001Google Scholar
  145. 145.
    Plattner V, Leray V, Leclair M-D, Aube A-C, Cherbut C, Glamiche JP: Interleukin-8 increases acetylcholine response of rat intestinal segments. Aliment Pharmacol Ther 15: 1227–1232, 2001Google Scholar
  146. 146.
    Merle A, Delagrange P, Renard P, Lesieur D, Cuber JC, Roche M, Pellissier S: Effect of melatonin on motility pattern of small intestine in rats and its inhibition by melatonin receptor antagonist S 22153. J Pineal Res 2: 116–124, 2000Google Scholar
  147. 147.
    Goodrich ME, McGee DW: Regulation of mucosal B cell immunoglobulin secretion by intestinal epithelial cell-derived cytokines. Cytokine 10: 948–955, 1998Google Scholar
  148. 148.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G: Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10: 387–398, 1999Google Scholar
  149. 149.
    Sigurdsson L, Reyes J, Kocoshis SA, Mazariegos G, Abu-Elmagd KM, Bueno J, Di Lorenzo C: Intestinal transplantation in children with chronic intestinal pseudo-obstruction. Gut 45: 570–574, 1999Google Scholar
  150. 150.
    Ogino Y, Kobayashi E, Fujimura A: Comparison of cyclosporin A and tacrolimus concentrations in whole blood between jejunal and ileal transplanted rats. J Pharm Pharmacol 51: 811–815, 1999Google Scholar
  151. 151.
    Sudan DL, Kaufman SS, Shaw BW, Fox IJ, McCashland TM, Schafer DF, Radio SJ, Hinrichs SH, Vanderhood JA, Langnas AN: Isolated intestinal transplantation for intestinal failure. Am J Gastroenterol 95: 1506–1515, 2000Google Scholar
  152. 152.
    Kouwenhoven EA, Stein-Oakley AN, Jablonski P, de Bruin RW, Thomson NM: EGF and TGF-¯1 gene expression in chronically rejecting small bowel transplants. Dig Dis Sci 44: 1117–1123, 1999Google Scholar
  153. 153.
    Stuber E, Buschenfeld A, von Freier A, Arendt T, Folsch UR: Intestinal crypt cell apoptosis in murine acute graft versus host disease is mediated by tumour necrosis factor alpha and not by the FasL-Fas interaction: effect of pentoxifylline on the development of mucosal atrophy. Gut 45: 229–235, 1999Google Scholar
  154. 154.
    Golovkina TV, Sholmchik M, Hannum L, Chervonsky A: Organogenic role of B lymphocytes in mucosal immunity. Science 286: 1965–1968, 1999Google Scholar
  155. 155.
    Fujihashi K, Dohi T, Rennert PD, Yamamoto M, Koga T, Kiyono H, McGhee JR: Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci USA 98: 3310–3315, 2001Google Scholar
  156. 156.
    Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF: Regulated MIP-3®/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 280: G710–G719, 2001Google Scholar
  157. 157.
    Chang N, Uribe JM, Keely SJ, Calandrella S, Barrett KE: Insulin and IGF-I inhibit calcium-dependent chloride secretion by T84 human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 281: G129–G137, 2001Google Scholar
  158. 158.
    Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT: GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Gastrointest Liver Physiol 279: G1249–G1256, 2000Google Scholar
  159. 159.
    Kudsk KA, Wu Y, Fukatsu K, Zarzaur BL, Johnson CD, Wang R, Hanna MK: Glutamine-enriched total pareenteral nutrition maintains intestinal interleukin-4 and mucosal immunoglobulin A levels. J Parent Enteral Nutr 24: 270–275, 2000Google Scholar
  160. 160.
    Dwinell MB, Lugering N, Eckmann L, Kagnoff MF: Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells. Gastroenterology 120: 49–59, 2001Google Scholar
  161. 161.
    Van Damme N, De Vos M, Baeten D, Demetter P, Mielants H, Verbruggen G, Cuvelier C, Veys EM, De Keyser F: Flowcytometric analysis of gut mucosal lymphocytes supports an impaired Th1 cytokine profile in spondyloarthropathy. Ann Rheum Dis 60: 495–499, 2001Google Scholar
  162. 162.
    Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, Rivard N: Requirement of the MAPkinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol 277: G631–G641, 1999Google Scholar
  163. 163.
    Subramanian V, Meyer B, Evans GS: The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64: 11–18, 1998Google Scholar
  164. 164.
    Sun Z, Wang X, Lasson A, Bojesson A, Annborn M, Andersson R: Effects of inhibition of PAF, ICAM-1 and PECAM-1 on gut barrier failure caused by intestinal ischemia and reperfusion. Scand J Gastroenterol 36: 55–65, 2001Google Scholar
  165. 165.
    Merendino N, Dwinell MB, Varki N, Eckmann L, Kagnoff MF: Human intestinal epithelial cells express receptors for platelet-activating factor. Am J Physiol 277: G810–G818, 1999Google Scholar
  166. 166.
    Fritsch C, Orian-Rousseaul V, Lefebvre O, Simon-Assmann P, Reimund JM, Duclos B, Kedinger M: Characterization of human intestinal stromal cell lines: response to cytokines and interactions with epithelial cells. Exp Cell Res 248: 391–406, 1999Google Scholar
  167. 167.
    Ku NO, Zhou X, Toivola DM, Omary MB: The cytoskeleton of digestive epithelia in health and disease. AmJ Physiol 277: G1108–G1137, 1999Google Scholar
  168. 168.
    Gutierrez JA, Perr HA: Mechanical stretch modulates TGF-beta 1 and alpha 1(I) collagen expression in fetal human intestinal smooth muscle cells. Am J Physiol 277: G1074–G1080, 1999Google Scholar
  169. 169.
    Schroder O, Hess S, Caspary WF, Stein J: Mediation of differentiating effects of butyrate on the intestinal cell line Caco-2 by transforming growth factor-beta 1. Eur J Nutr 38: 45–50, 1999Google Scholar
  170. 170.
    Itoh H, Hamasuna R, Kataoka H, Yamauchi M, Miyazawa K, Kitamura N, Koono M: Mouse hepatocyte growth factor activator gene: its expression not only in the liver but also in the gastrointestinal tract. Biochim Biophys Acta 1491: 295–302, 2000Google Scholar
  171. 171.
    Stern LE, Falcone RA, Kemp CJ, Braun MC, Erwin CR, Warner BW: Salivary epidermal growth factor and intestinal adaptation in male and female mice. Am J Physiol Gastrointest Liver Physiol 278: G871–G877, 2000Google Scholar
  172. 172.
    Jobin C, Holt L, Bradham CA, Streetz K, Brenner DA, Sartor RB: TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol 162: 4447–4454, 1999Google Scholar
  173. 173.
    Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Straatman JL, Hultgren SJ, Matrisian LM, Parks WC: Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286: 113–117, 1999Google Scholar
  174. 174.
    Tian JQ, Quaroni A: Involvement of p21 (WAF1/Cip1) and p27 (Kip1) in intestinal epithelial cell differentiation. AmJ Cell Physiol 276: C1245–C1258, 1999Google Scholar
  175. 175.
    Zarrilli R, Pignata S, Apicella A, Di Popolo A, Memoli A, Ricchi P, Salzano S, Acquaviva AM: Cell cycle block at G1-S or G2-M phase correlates with differentiation of caco-2 cells: effect of constitutive insulin-like growth factor II expression. Gastroenterol 116: 1358–1366, 1999Google Scholar
  176. 176.
    Jehle PM, Fussgaenger RD, Blum WF, Angelus NK, Hoeflich A, Wolf E, Jungwirth RJ: Differential autocrine regulation of intestine epithelial cell proliferation and differentiation by insulin-like growth factor (IGF) system components. Horm Metab Res 31: 97–102, 1999Google Scholar
  177. 177.
    Menard D, Corriveau L, Beaulieu JF: Insulin modulates cellular proliferation in developing human jejunum and colon. Biol Neonate 75: 143–151, 1999Google Scholar
  178. 178.
    Plateroti M, Chassande O, Fraichard A, Gauthier K, Freund JN, Samarut J, Kedinger M: Involvement of T3Ralpha-and beta-receptor subtypes in mediation of T3 functions during postnatal murine intestinal development. Gastroenterology 116: 1367–1378, 1999Google Scholar
  179. 179.
    Ferrary E, Cohen-Tannoudji M, Pehau-Arnaudet G, Lapillonne A, Athman R, Ruiz T, Boulouha L, Louvard D, Jaisser F, Robine S: In vivo, villin is required for Ca(2 C )-dependent F-actin disruption in intestinal brush borders. J Cell Biol 146: 819–830, 1999Google Scholar
  180. 180.
    Rao JN, Li L, Golovina VA, Platoshyn O, Strauch ED, Yuan JX, Wang JY. Ca2C-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol 280: C993–C1007, 2001Google Scholar
  181. 181.
    Berlanga-Acosta J, Playford RJ, Mandir N, Goodlad RA: Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut 48: 803–807, 2001Google Scholar
  182. 182.
    Foligne B, Aissaoui S, Senegas-Balas F, Cayuela C, Bernard P, Antoine J-M, Balas D: Changes in cell proliferation and differentiation of adult rat small intestine epithelium after adrenalectomy. Dig Dis Sci 46: 1236–1246, 2001Google Scholar
  183. 183.
    Sheppard KE, Li KX, Autelitano DJ: Corticosteroid receptors and 11beta-hydroxysteroid dehydrogenase isoforms in rat intestinal epithelia. Am J Physiol 277: G541–G547, 1999Google Scholar
  184. 184.
    Reuter BK, Wallace JL: Phosphodiesterase inhibitors prevent NSAID enteropathy independently of effects on TNF-alpha release. Am J Physiol 277: G847–G854, 1999Google Scholar
  185. 185.
    Xian CJ, Xu X, Mardell CE, Howarth GS, Byard RW, Moore DJ, Miettinen P, Read LC: Site-specific changes in transforming growth factor-alpha and-beta1 expression in colonic mucosa of adolescents with inflammatory bowel disease. Scand J Gastroenterol 34: 591–600, 1999Google Scholar
  186. 186.
    Clark DE: Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88: 807–814, 1999Google Scholar
  187. 187.
    Lin JH, Chiba M, Chen IW, Nishime JA, deLuna FA, Yamazaki M, Lin YJ: Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction. Drug Metab Dispos 27: 1187–1193, 1999Google Scholar
  188. 188.
    Yumoto R, Murakami T, Nakamoto Y, Hasegawa R, Nagai J, Takano M: Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. J Pharmacol Exp Ther 289: 149–155, 1999Google Scholar
  189. 189.
    Hu M, Li Y, Davitt CM, Huang SM, Thummel K, Penman BW, Crespi CL: Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxidoreductase. Pharm Res 16: 1352–1359, 1999Google Scholar
  190. 190.
    Tavelin S, Milovic V, Ocklind G, Olsson S, Arthursson P: A conditionally immortalized epithelial cell line for studies of intestinal drug transport. J Pharmacol Exp Ther 290: 1212–1221, 1999Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Alan B.R. Thomson
    • 1
  • Laurie Drozdowski
    • 1
  • Claudiu Iordache
    • 1
  • Ben K.A. Thomson
    • 1
  • Severine Vermeire
    • 2
  • M. Tom Clandinin
    • 1
  • Gary Wild
    • 2
  1. 1.Nutrition and Metabolism Group, Division of Gastroenterology, Department of MedicineUniversity of AlbertaEdmontonAlberta
  2. 2.Division of Gastroenterology, Department of MedicineMcGill University Health Centre, MontréalQuebecCanada

Personalised recommendations