Digestive Diseases and Sciences

, Volume 48, Issue 8, pp 1546–1564 | Cite as

REVIEW: Small Bowel Review: Normal Physiology, Part 1

  • Alan B.R. Thomson
  • Laurie Drozdowski
  • Claudiu Iordache
  • Ben K.A. Thomson
  • Severine Vermeire
  • M. Tom Clandinin
  • Gary Wild
Article
small bowel bowel physiology nutrients absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Zhang X, Fogel R, Renehan WE: Stimulation of the paraventricular nucleus modulates the activity of gut-sensitive neurons in the vagal complex. Am J Physiol 277: G79–G90, 1999Google Scholar
  2. 2.
    Naim HY: Molecular and cellular aspects and regulation of intestinal lactase-phlorizin hydrolase. Histol Histopathol 16: 553–561, 2001Google Scholar
  3. 3.
    Dudley MA, Schoknecht PA, Dudley AW, Jiang L, Ferraris RP, Rosenberger JN, Henry JF, Reeds PJ: Lactase synthesis is pretranslationally regulated in protein-deficient pigs fed a protein-sufficient diet. Am J Physiol Gastrointest Liver Physiol 280: G621–G628,2001Google Scholar
  4. 4.
    Spodsberg N, Troelsen JT, Carlsson P, Enerback S, Sjostrom H, Noren O: Transcriptional regulation of pig lactase-phlorizin hydrolase: involvement of HNF-1 and FREACs. Gastroenterology 116: 842–854, 1999Google Scholar
  5. 5.
    Goda T, Yasutake H, Tanaka T, Takase S: Lactase-phlorizin hydrolase and sucrase-isomaltase genes are expressed differently along the villus-crypt axis of rat jejunum. J Nutr 129: 1107–1113, 1999Google Scholar
  6. 6.
    Olkkonen VM, Ikonen E: Genetic defects of intracellular-membrane transport. N Engl J Med 343: 1095–1104, 2000Google Scholar
  7. 7.
    Jacob R, Zimmer KP, Schmitz J, Naim HY: Congential sucrase-isomaltase deficiency arising from cleavage and secretion of a mutant form of the enzyme. J Clin Invest 106: 281–287, 2000Google Scholar
  8. 8.
    Masini A, Efrati C, Merli M, Attili AF, Amodio P, Ceccanti M, Riggio O: Effect of lactitol on blood ammonia response to oral glutamine challenge in cirrhotic patients: evidence for an effect of nonabsorbable disaccharides on small intestine ammonia generation. Am J Gastroenterol 94: 3323–3327, 1999Google Scholar
  9. 9.
    Peuhkuri K, Nevala R, Vapaatalo H, Moilanen E, Korpela R: Ibuprofen augments gastrointestinal symptoms in lactose maldigesters during a lactose tolerance test. Aliment Pharmacol Ther 13: 1227–1233, 1999Google Scholar
  10. 10.
    Akompong T, Ramm E, Chang C, Yu ZK, Wessling-Resnick M: Immunological analysis of beta-thalassemic mouse intestinal proteins reveals up-regulation of sucrase-isomaltase in response to iron overload. J Nutr 129: 949–952, 1999Google Scholar
  11. 11.
    During MJ, Xu R, Young D, Kaplitt MG, Sherwin RS, Leone P: Peroral gene therapy of lactose intolerance using an adeno-associated virus vector. Nat Med 4: 1131–1135, 1998Google Scholar
  12. 12.
    Zhang B, Egli D, Georgiev O, Schaffner W: The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21: 4505–4514, 2001Google Scholar
  13. 13.
    Nichols BL, Nichols VN, Putman M, Avery SE, Fraley JK, Quaroni A, Shiner M, Sterchi EE, Carrazza FR: Contribution of villous atrophy to reduced intestinal maltase in infants with malnutrition. J Pediatr. Gastroenterol Nutr 30: 494–502, 2000Google Scholar
  14. 14.
    Finn AL, Kuzhikandathil EV, Oxford GS, Itoh-Lindstrom Y: Sucrase-isolmaltase is an adenosine 3; 5'-cyclic monophosphate-dependent epithelial chloride channel. Gastroenterology 120: 117–125, 2001Google Scholar
  15. 15.
    Reuss L: One-hundred years of inquiry: the mechanism of glucose absorption in the intestine. Annu Rev Physiol 62: 939–946, 2000Google Scholar
  16. 16.
    Pappenheimer JR: Role of pre-epithelial “unstirred” layers in absorption of nutrients from the human jejunum. J Membr Biol 179: 185–204, 2001Google Scholar
  17. 17.
    Atuma C, Strugala V, Allen A, Holm L: The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo.Am J Physiol Gastrointest Liver Physiol 280: G922–G929, 2001Google Scholar
  18. 18.
    Turner JR, Cohen DE, Mrsny RJ, Madara JL: Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by NaC-glucose cotransport. Dig Dis Sci 45: 2122–2126, 2000Google Scholar
  19. 19.
    Wright EM, Hirsch JR, Loo DDF, Zampighi GA: Regulation of Na+/glucose cotransporters. J Exp Biol 200: 287–293, 1997Google Scholar
  20. 20.
    Corpe CP, Burant CF, Hoekstra JH: Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr 28: 364–374, 1999Google Scholar
  21. 21.
    Kellett GL, Helliwell PA: The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J Aug 15: 3501: 155–162, 2000Google Scholar
  22. 22.
    Tavakkolizadeh A, Berger UV, Shen KR, Levitsky LL, Zinner MJ, Hediger MA, Ashley SW, Whang EE, Rhoads DB: Diurnal rhythmicity in intestinal SGLT-1 function, Vmax, and mRNA expression topography. Am J Physiol Gastrointest Liver Physiol 280: G209–G215, 2001Google Scholar
  23. 23.
    Vayro S, Silverman M: PKC regulates turnover rate of rabbit intestinal Na+-glucose transporter expressed in COS-7 cells. Am J Physiol 276: C1053–C1060, 1999Google Scholar
  24. 24.
    Han C, Ming Z, Lautt WW: Blood flow-dependent prostaglandin f(2alpha) regulates intestinal glucose uptake from the blood. Am J Physiol 277: G367–G374, 1999Google Scholar
  25. 25.
    Scholtka B, Stumple F, Jungermann K: Acute increase, stimulated by prostaglandin E2, in glucose absorption via the sodium dependent glucose transporter-1 in rat intestine. Gut 44: 490–496, 1999Google Scholar
  26. 26.
    Diez-Sampedro A, Urdaneta E, Lostao MP, Barber A: Galactose transport inhibition by cytochalasin E in rat intestine in vitro. Can J Physiol Pharmacol 77: 96–101, 1999Google Scholar
  27. 27.
    Hines OJ, Whang EE, Bilchik AJ, Zinner MJ, Welton ML, Lane J, McFadden DW, Ashley SW: Role of NaC-glucose cotransport in jejunal meal-induced absorption. Dig Dis Sci 45: 1–6, 2000Google Scholar
  28. 28.
    Turner JR, Cohen DE, Mrsny RJ, Madara JL: Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by NaC-glucose cotransport. Dig Dis Sci 45: 2122–2126, 2000Google Scholar
  29. 29.
    Cano M, Calonge ML, Peral MJ, Ilundain AA: A NaC-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells. Pfluegers Arch 441: 686–691, 2001Google Scholar
  30. 30.
    Ledochowski M, Widner B, Sperner-Unterweger B, Propst T, Vogel W, Fuchs D: Carbohydrate malabsorption syndromes and early signs of mental depression in females. Dig Dis Sci 45: 1255–1259, 2000Google Scholar
  31. 31.
    Ladas SD, Grammenos I, Tassios PS, Raptis SA: Coincidental malabsorption of lactose, fructose, and sorbitol ingested at low doses is not common in normal adults. Dig Dis Sci 45: 2357–2362, 2000Google Scholar
  32. 32.
    Wolfe MM, Zhao K-B, Glazier KD, Jarboe LA, Tseng C-C: Regulation of glucose-dependent insulinotropic polypeptide release by protein in the rat. Am J Physiol Gastrointest Liver Physiol 279: G561–G566, 2000Google Scholar
  33. 33.
    Hardin J, Kroeker K, Chung B, Gall DG: Effect of proinflammatory interleukins on jejunal nutrient transport. Gut 47: 184–191, 2000Google Scholar
  34. 34.
    Rongione AJ, Kusske AM, Newton TR, Asheley SW, Zinner MJ, McFadden DW: EGF and TGF stimulate probasorption of glucose and electrolytes by NaC/glucose cotransporter in awake canine model. Dig Dis Sci 46: 1740–1747, 2001Google Scholar
  35. 35.
    Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT: GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Gastrointest Liver Physiol 279: G1249–G1256, 2000Google Scholar
  36. 36.
    Alexander AN, Carey HV: Oral IGF-I enhances nutrient and electrolyte absorption in neonatal piglet intestine. Am J Physiol 277: G619–G625, 1999Google Scholar
  37. 37.
    Alexander AN, Carey HV: Involvement of PI 3-kinase in IGF-I stimulation of jejunal NaC-KCATPase activity and nutrient absorp-tion. Am J Physiol Gastrointest Liver Physiol 280: G222–G228, 2001Google Scholar
  38. 38.
    Donegan L, Hudye SA, Olson ME, Hardin JA, Gall DG: Effect of a dietary nonionic surfactant on small intestinal nutrient transport. Dig Dis Sci 44: 1423–1427, 1999Google Scholar
  39. 39.
    Debru E, Martin GR, Sigalet DL: In vivo measurement of intestinal absorption using 3-O-methylglucose in short bowel syndrome. J Pediatr Surg 36: 745–749, 2001Google Scholar
  40. 40.
    Raybould HE: Nutrient tasting and signaling mechanisms in the gut. I. Sensing of lipid by the intestinal mucosa. Am J Physiol 277: G751–G755, 1999Google Scholar
  41. 41.
    Feinle C, Meier O, Otto B, D'Amato M, Fried M: Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut 48: 347–355, 2001Google Scholar
  42. 42.
    Accarino AM, Azpiroz F, Malagelada J-R: Modification of small bowel mechanosensitivity by intestinal fat. Gut 48: 690–695, 2001Google Scholar
  43. 43.
    French SJ, Conlon CA, MUtama ST, Arnold M, Read NW, Meijer G, Francis J: The effects of intestinal infusion of long-chain fatty acids on food intake in humans. Gastroenterology 119: 943–948,2000Google Scholar
  44. 44.
    Ros E: Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151: 357–379, 2000Google Scholar
  45. 45.
    Carriere F, Renou C, Lopez V, De Caro J, Ferraato F, Lensgsfeld H, De Caro A, Laugier R, Verger R: The specific activities in human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology 119: 949–960, 2000Google Scholar
  46. 46.
    Kuhel DG, Zheng S, Tso P, Hui DY: Adenovirus-mediated human pancreatic lipase gene transfer to rat bile acid: gene therapy of fat malabsorption. Am J Physiol Gastrointest Liver Physiol 279: G1031–G1036, 2000Google Scholar
  47. 47.
    Borovicka J, Schwizer W, Guttmann G, Hartmann D, Kosinski M, Wasteil C, Bischof-Delaloye A, Fried M: Role of lipase in the regulation of postprandial gastric acid secretion and emptying of fat in humans: a study wiht orlistat, a highly specific lipasee inhibitor. Gut 46: 7–781, 2000Google Scholar
  48. 48.
    Jandacek RJ, Kester JJ, Papa AJ, Wehmeier TJ, Lin PY: Olestra formulation and the gastrointestinal tract. Lipids 34: 771–783, 1999Google Scholar
  49. 49.
    Saviana B, Quilliot D, Ziegler O, Bigard MA, Drouin P, Gueant JL: Diagnosis of lipid malabsorption in patients with chronic pancreatitis: a new indirect test using postprandial plasma apolipoprotein B-48. Am J Gastroenterology 94: 3229–3235, 1999Google Scholar
  50. 50.
    Mahan JT, Heda GD, Rao RH, Mansbach CM: The intestine expresses pancreatic triacylglycerol lipase: regulation by dietary lipid. Am J Physiol Gastrointest Liver Physiol 280: G1187–G1196,2001Google Scholar
  51. 51.
    Korotkova M, Strandvik B: Essential fatty acid deficiency affects the fatty acid composition of the rat small intestinal and colonic mucosa differently. Biochim Biophys Acta 1487: 319–325, 2000Google Scholar
  52. 52.
    Gui X, Carraway RE: Enhancement of jejunal absorption of conjugated bile acid by neurotensin in rats. Gastroenterology 120: 151–160, 2001Google Scholar
  53. 53.
    Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB: SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. AmJ Physiol Gastrointest Liver Physiol 280: G687–G693, 2001Google Scholar
  54. 54.
    Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K: Mechanism(s) of butyrate transport in Caco-2 cells: role of monocaroboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 279: G775–G780, 2000Google Scholar
  55. 55.
    Hara H, Haga S, Aoyama Y, Kiriyama S: Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129: 942–948, 1999Google Scholar
  56. 56.
    Cuche G, Blat S, Malbert CH: Desensitization of ileal vagal receptors by short-chain fatty acids in pigs. Am J Physiol Gastrointest Liver Physiol 280: G1013–G1021, 2001Google Scholar
  57. 57.
    Jorgensen JR, Fitch MD, Mortensen PB, Fleming SE: In vivo absorption of medium-chain fatty acids by the rat colon exceeds that of short-chain fatty acids. Gastroenterology 120: 1152–1161, 2001Google Scholar
  58. 58.
    Minich DM, Havinga R, Stellaaard F, Vonk RJ, Kuipers F, Verkade HJ: Intestinal absorption and postabsorptive metabolism of linoleic acid in rats with short-term bile duct ligation. Am J Physiol Gastroinest Liver Physiol 279: G1242–G1248, 2000Google Scholar
  59. 59.
    Agellon LB, Torchia EC: Intracellular transport of bile acids. Biochim Biophys Acta 1486: 198–209, 2000Google Scholar
  60. 60.
    Shneider BL: Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32: 407–417,2001Google Scholar
  61. 61.
    Duane WC, Hartich LA, Bartman AE, Ho SB: Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients wiht hypertriglyceridemia. J Lipid Res 41: 1384–1389, 2000Google Scholar
  62. 62.
    Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C: Substrate specificity of the ileal and the hepatic Na( C )/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40: 1604–1617, 1999Google Scholar
  63. 63.
    Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P: Identification of a bile acid-responsive element in the human ilea bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 274: 29749–29754, 1999Google Scholar
  64. 64.
    Drobnik W, Lindenthal B, Lieser B, Ritter M, Christiansen T, Liebisch G, Giesa U, Igel M, Borsukova H, Buchler C, Ping W, Bergmann KV, Schmitz G: ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology 120: 1203–1211, 2001Google Scholar
  65. 65.
    Bertolotti M, Spady DK: Inhibition of intestinal cholesterol absorption by surfomer (alpha-olefinmaleic acid) affects hepatic choles-terol synthesis and low density lipoprotein transport in hamsters fed a fat-enriched diet. Dig Liver Dis 33: 145–150, 2001Google Scholar
  66. 66.
    Sparrow CP, Patel S, Baffic J, Yu-Sheng C, Hernandez M, Lam M-H, Montenegro J, Wright SD, Detmers PA: A flourescent cholesterol analog traces cholesterol absorption in hamsters and is esterified in vivo and in vitro. J Lipid Res 40: 1747–1757, 1999Google Scholar
  67. 67.
    Kramer W, Glombik H, Petry S, Heuer H, Schafer H-L, Wendler W, Corsiero D, Girbig F, Weyland C: Identification of binding proteins for cholesterol absorption inhibitors as components of the intestinal cholesterol transporter. FEBS 487: 293–297, 2000Google Scholar
  68. 68.
    Detmers PA, Patel S, Hernandez M, Montenegro J, Lisnock J, Pikounis B, Steiner M, Kim D, Sparrow C, Wright SD: A target for cholesterol absorption inhibitors in the enterocyte brush border membrane. Biochim Biophys Acta 1486: 243–252, 2000Google Scholar
  69. 69.
    Hernandez M, Montenegro J, Steiner M, Kim D, Sparrow C, Detmers PA, Wright SD, Chao Y-S: Intestinal absorption of cholesterol is mediated by a saturable, inhibitable transporter. Biochim Biophys Acta 1486: 232–242, 2000Google Scholar
  70. 70.
    Jacobsen W, Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, Benet LZ, Sewing KF, Christians U: Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab Dispos 27: 173–179, 1999Google Scholar
  71. 71.
    Wingler K, Muller C, Schmehl K, Florian S, Brigelius-Flohe R: Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in Caco-2 cells. Gastroenterology 119: 420–430,2000Google Scholar
  72. 72.
    Courtois F, Suc I, Garofalo C, Ledoux M, Seidman E, Levy E: Ascorbate alters the efficiency of Caco-2 cells to assemble and secrete lipoproteins. Am J Physiol Gastrointest Liver Physiol 279: G12–G19, 2000Google Scholar
  73. 73.
    Tso P, Lee T, Demichele SJ: Lymphatic absorption of structured triglycerides vs physical mix in a rat model of fat malabsorption. Am J Physiol 277: G333–G340, 1999Google Scholar
  74. 74.
    Catwright IJ, Higgins JA: Increased dietary triacylglycerol markedly enhances the ability of isolated rabbit enterocytes to secrete chylomicrons: an effect related to dietary fatty acid composition. J Lipid Res 40: 1858–1866, 1999Google Scholar
  75. 75.
    Unmack MA, Rangachari PK, Skadhauge E: Effects of isoprostanes and prostanoids on porcine small intestine. J Pharmacol Exp Ther 296: 434–441, 2001Google Scholar
  76. 76.
    Wang H, Lu S, Du J, Yao Y, Berschneider HM, Black DD: Regulation of apolipoprotein secretion by long-chain polyunsaturated fatty acids in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 280: G1137–G1144, 2001Google Scholar
  77. 77.
    Kalogeris TJ, Painter RG: Adaptation of intestinal production of apolipoprotein A-IV during chronic feeding of lipid. Am J Physiol Regul Integr Comp Physiol 280: R1155–R1161, 2001Google Scholar
  78. 78.
    Emken EA, Adlof RO, Duval SM, Nelson GJ: Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope-labeled oleic, linoleic, and linolenic acids by male subjects. Lipids 34: 785–791, 1999Google Scholar
  79. 79.
    Kalogeris TJ, Holden VR, Tso P: Stimulation of jejunal synthesis of apolipoprotein A-IV by ileal lipid infusion is blocked by vagotomy. Am J Physiol 277: G108–G1087, 1999Google Scholar
  80. 80.
    Liu M, Dio T, Woods SC, Seeley RJ, Zheng S, Jackman A, Tso P: Inestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. Am J Physiol Regul Integr Comp Physiol 280: R1382–R1387, 2001Google Scholar
  81. 81.
    Tamura M, Tanka A, Kobayashi Y, Nihei Z, Numano F: Expression of apolipoprotein B-100 in isolated human small intestine epithelium. Horm Metab Res 32: 343–349, 2000Google Scholar
  82. 82.
    Reaves SK, Wu JYJ, Fanzo JC, Wang YR, Lei PP, Lei KY: Regulation of intestinal apolipoprotein B mRNA editing levels by a zinc-deficient diet and cDNA cloning of editing protein in hamsters. J Nutr 130: 2166–2173, 2000Google Scholar
  83. 83.
    Murota K, Matsui N, Kawada T, Takahashi N, Shintani T, Saski K, Fushiki T: Influence of fatty alcohol and other fatty acid derivatives on fatty acid uptake into rat intestinal epithelial cells. Lipids 36: 21–26, 2001Google Scholar
  84. 84.
    Stahl A, Hirsch DJ, Gimeno RE, Punreddy S, Ge P, Watson N, Patel S, Ketler M, Raimondi A, Tartaglia LA, Lodish HF: Identification of the majory intestinal fatty acid transport protein. Mol Cell 4: 299–308, 1999Google Scholar
  85. 85.
    Weisiger RA: Saturable stimulation of fatty acid transport through model cytoplasm by soluble binding protein. Am J Physiol 277: G109–G119, 1999Google Scholar
  86. 86.
    Luxon BA, Milliano MT: Cytoplasmic transport of fatty acids in rat enterocytes: role of binding to fatty acid-binding protein. Am J Physiol 277: G361–G366, 1999Google Scholar
  87. 87.
    Likic VA, Prendergast FG: Structural and dynamics of the fatty acid binding cavity in apo rat intestinal fatty acid binding protein. Protein Sci 8: 1649–1657, 1999Google Scholar
  88. 88.
    Alpers DH, Bass NM, Engle MJ, DeSchryver-Kecskemeti K: Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. Biochem Biophys Acta 1483: 352–362, 2000Google Scholar
  89. 89.
    Darimont C, Gradoux N, Cumin F, De Pover A: Effects of intestinal fatty acid-binding protein overexpression on fatty acid metabolim in Caco-2 cells. J Lipid Res 41: 84–92, 2000Google Scholar
  90. 90.
    Vassileva G, Huwyler L, Poirier K, Agellon LG, Toth MJ: The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14: 2040–2046, 2000Google Scholar
  91. 91.
    Lampen A, Meyer S, Nau H: Effect of receptor-selective retinoids on CYP26 gene expression and metabolism of all-transretinoic acid in intestinal cells. Drug Metab Dispos 29: 742–747, 2001Google Scholar
  92. 92.
    Poirier H, Niot I, Monnot M, Braissant O, Meunier-Durmort C, Costet P, Pineau T, Wahli W, Willson TM, Besnard P: Differential involvement of peroxisome-proliferator-activated receptors ® and ± in fibrate and fatty-acd-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355: 481–488, 2001Google Scholar
  93. 93.
    Choema SK, Agellon LB: The murine and human cholesterol 7®-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor ®. J Biol Chem 275: 12530–12536,2000Google Scholar
  94. 94.
    Levy E, Stan S, Delvin EE, Seidman EG, Menard D: Immunolocalization, ontogeny, and regulation of microsomal triglyceride transfer protein in human fetal intestine. AmJ Physiol Gastrointest Liver Physiol 280: G563–G571, 2001Google Scholar
  95. 95.
    Dannoura AH, Berriot-Varoqueaux N, Amati P, Abadie V, Verthier N, Schmitz J, Wetterau JR, Samson-Bouma ME, Aggerbeck LP: Anderson's disease: exclusion of apolipoprotein and intracellular lipid transport genes. Arterioscler Thromb Vasc Biol 19: 2494–2508, 1999Google Scholar
  96. 96.
    Zanlungo S, Amigo L, Mendoza H, Francisco J, Vio C, Glick JM, Rodriguez A, Kozarsy K, Quinones V, Rigotti A, Nervi F: Sterol carrier protein 2 gene transfer changes lipid metabolism and enterohepatic sterol circulation in mice. Gastroenterology 119: 1708–1719, 2000Google Scholar
  97. 97.
    Chang CCY, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee CG, Strom SC, Kashyap R, Fung JJ, Farese RV, Patoiseau J-F, Delhon A, Chang TY: Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem 275: 28083–28092, 2000Google Scholar
  98. 98.
    Minich DM, Voshol PJ, Havinga R, Stellaard F, Kuipers F, Vonk RJ, Verkade HJ: Biliary phospholipid secretion is not required for intestinal absorption and plasma status of linoleic acid in mice. Biochim Biophys Acta 1441: 14–22, 1999Google Scholar
  99. 99.
    Levy E, Menard D: Developmental aspects of lipid and lipoprotein synthesis and secretion in human gut. Microsc Res Tech 49: 363–373, 2000Google Scholar
  100. 100.
    Ee LC, Zheng S, Yao L, Tso P: Lymphatic absorption of fatty acids and cholesterol in the neonatal rat. Am J Physiol Gastrointest Liver Physiol 279: G325–G331, 2000Google Scholar
  101. 101.
    Boileau AC, Lee CM, Erdman JW: Vitamin A deficiency reduces uptake of ¯-carotene by brush border membrane vesicles but does not alter intestinal retinyl ester hydrolase activity in the rat. J Nutr Biochem 11: 436–442, 2000Google Scholar
  102. 102.
    Tanii H, Horie T: Uptake of barbituric acid derivatives in small intestinal brush border membrane vesicles from retinyl palmitate-treated rats. Pharmacol Toxicol 87: 79–83, 2000Google Scholar
  103. 103.
    Evenepoel P, Claus D, Geypens B, Hiele M, Geboes K, Rutgeerts P, Ghoos Y: Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am J Physiol 277: G935–G943,1999Google Scholar
  104. 104.
    Erickson RH, Gum JR, Lotteman CD, Hicks JW, Lai RS, Kim YS: Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor 1 alpha. Biochem J 338: 91–97, 1999Google Scholar
  105. 105.
    Erickson RH, Lai RS, Kim YS: Role of hepatocyte nuclear factor 1 alpha and I beta in the transcriptional regulation in human dipeptidyl peptidase IV during differentiation of Caco2 cells. Biochem Biophys Res Commun 270: 235–239, 2000Google Scholar
  106. 106.
    Kataoka H, Joh T, Miura Y, Tamaki T, Senoo K, Ohara H, Nomura T, Tada T, Asai K, Kato T, Itoh M: AT motif binding factor 1-A (ATBF1-A) negatively regulates transcription of the aminopeptidase N gene in the crypt-villus axis of small intestine. Biochem Biophys Res Commun 267: 91–95, 2000Google Scholar
  107. 107.
    Yang CY, Dantzig AH, Pedgeon C: Jntestinal peptide transport systems and oral drug availability. Pharm Res 16: 1331–1343, 1999Google Scholar
  108. 108.
    Fei Y-J, Sugawara M, Liu J-C, Li HW, Ganapthy V, Ganapthy ME, Leiback FH: cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1. Biochim Biophys Acta 1492: 145–154, 2000Google Scholar
  109. 109.
    Katsura T, Mizuuchi H, Hashimoto Y, Inu K-I: Transport of pro-cainamide via H+/tertiary amine antiport system in rabbit intestinal brush-border membrane. Am J Gastrointest Liver Physiol 279: G799–G805, 2000Google Scholar
  110. 110.
    Ogihara H, Suzuki T, Nagamachi Y, Inui K, Takata K: Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acids. Histochem J31: 169–174, 1999Google Scholar
  111. 111.
    Ihara T, Tsujikawa T, Fujiyama Y, Bamba T: Regulation of PepT1 peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 61: 59–67, 2000Google Scholar
  112. 112.
    Thamotharan M, Bawani SZ, Zhou X, Adibi SA: Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast. Metabolism 48: 681–684, 1999Google Scholar
  113. 113.
    Shen H, Smith DE, Brosius FC: Developmental expression of PepT1 and PepT2 in rat small intestine, colon, and kidney. Pediatr Res 49: 789–795, 2001Google Scholar
  114. 114.
    Thwaites DT, Ford D, Glanville M, Simmons NL: H( C )/solute-induced intracellular acidification leads to selective activation of apical Na( C )/H( C ) exchange in human intestinal epithelial cells. J Clin Invest 104: 629–635, 1999Google Scholar
  115. 115.
    Berlioz F, Maoret JJ, Laburthe M, Farinotti R, Roze C: Alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. J Pharmacol Exp Ther 294: 466–472, 2000Google Scholar
  116. 116.
    Iseki K, Sugawara M, Sato K, Naasani I, Hayakawa T, Kobayashi M, Miyazaki K: Multiplicity of the HC-dependent transport mechanism of dipeptide and anionic beta-lactam antibiotic ceftibuten in rat intestinal brush-border membrane. J Pharmacol Exp Ther 289: 66–71, 1999Google Scholar
  117. 117.
    Terada T, Sawada K, Satio H, Hashimoto Y, Inui K: Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol 276: G1435–G1441, 1999Google Scholar
  118. 118.
    Pascual M, Castilla-Cortazar I, Urdaneta E, Quiroga J, Garcia M, Picardi A, Prieto J: Altered intestinal transport of amino acids in cirrhotic rats: the effect of insulin-like growth factor-I. Am J Gastrointest Liver Physiol 279: G319–G324, 2000Google Scholar
  119. 119.
    Gao J, Sudoh M, Aube J, Borchardt RT: Transport characteristics of peptides and peptidomimetics: I. N-methylated peptides as substrates for the oligopeptide transporter and P-glycoprotein in the intestinal mucosa. J Pept Res 57: 316–329, 2001Google Scholar
  120. 120.
    Hashimoto T, Nomoto M, Komatsu K, Haga M, Hayashi M: Improvement of intestinal absorption of peptides: adsorption of B1-Phe monoglyocylated insulin to rat intestinal brush-border membrane vesicles. Eur J Pharm Biopharm 50: 197–204, 2000Google Scholar
  121. 121.
    Wu SJ, Robinson JR: Transport of human growth hormone across Caco-2 cells with novel delivery agents: evidence for P-glycoprotein involvement. J Control Release 62: 171–177, 1999Google Scholar
  122. 122.
    Carriere V, Rodolose A, Lacasa M, Cambier D, Zweibaum A, Rousset M: Hypoxia and CYP1A1 induction-dependent regulation of proteins involved in glucose utilization in Caco-2 cells. Am J Physiol 274: G1101–G1108, 1998Google Scholar
  123. 123.
    Hori M, Kita M, Torihashi S, Miyamoto S, Won K-J, Sato K, Ozaki H, Karaki H: Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 280: G930–G938, 2001Google Scholar
  124. 124.
    Abad B, Mesonero JE, Salvador MT, Garcia-Herrera J, Rodriguez-Yoldi MJ: Effect of lipopolysaccharide on small intestinal L-leucine transport in rabbit. Dig Dis Sci 46: 1113–1119, 2001Google Scholar
  125. 125.
    Mordrelle A, Jullian E, Costa C, Cormet-Boyaka E, Benamouzig R, Tom D, Huneau J-F: EAAT1 is involved in transport of L-glutamine during differentiation of the Caco-2 cell line. Am J Physiol Gastrointest Liver Physiol 279: G366–G373, 2000Google Scholar
  126. 126.
    Hatanaka T, Nabuchi Y, Ushio H: Transport of N(G)-nitro-L-arginine across intestinal brush border membranes by NaC-dependent and NaC-independent amino acid transporters. Pharm Res 16: 1770–1774, 1999Google Scholar
  127. 127.
    Nakanishi T, Hatanaka T, Huang W, Prasad PD, Leibach FH, Ganapathy ME, Ganapathy V: NaC-and Cl¡-coupled active transport of carnitine by the amino acid transporter ATB(0, C ) from mouse colon expressed in HRPE cells and xenopus oocytes. J Physiol 532: 297–304, 2001Google Scholar
  128. 128.
    Samuels SE, Knowles AL, Tilignac T, Debiton E, Madelmont JC, Attaix D: Protein metabolism in the small intesine during cancer cahixia and chemotherapy in mice. Cancer Res 60: 4968–4974,2000Google Scholar
  129. 129.
    Kerneis S, Pringault E: Plasticity of the gastointestinal epithelium: the M cell paradigm and opportunism of pathogenic microorgan-isms. Semin Immunol 11: 205–215, 1999Google Scholar
  130. 130.
    Yang PC, Berin MC, Yu L, Perdue MH: Mucosal pathophysiology and inflamatory changes in the late phase of the intestinal allergic reaction in the rat. Am J Pathol 158: 681–690, 2001Google Scholar
  131. 131.
    So AL, Small G, Sperber K, Becker K, Oei E, Tyorkin M, Mayer L: Factors affecting antigen uptake by human intestinal epithelial cell lines. Dig Dis Sci 45: 1130–1137, 2000Google Scholar
  132. 132.
    Kitamura T, Garofalo RP, Kamijo A, Hammond DK, Oka JA, Cafisch CR, Shenoy M, Casola A, Weigel PH, Goldblum RM: Human intestinal epithelial cells express a novel receptor for IgA. J Immunol 164: 5029–5034, 2000Google Scholar
  133. 133.
    Kweon MN, Yamamoto M, Kajiki M, Takahashi I, Kiyono H: Systemically derived large intestinal CD4( C ) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J Clin Invest 106: 199–206, 2000Google Scholar
  134. 134.
    Jiang W, Kreis ME, Eastwood C, Kirkup AJ, Humphrey PPA, Grundy D: 5-HT3 and histamine H1 receptors mediate afferent nerve sensitivity to intestinal anaphylaxis in rats. Gastroenterology 119: 213, 2000Google Scholar
  135. 135.
    Scott RB, Tan DT, Sharkey KA: Effect of splanchnectomy on jejunal motility and Fos expression in brain stem after intestinal anaphylaxis in rat. Am J Gastrointest Liver Physiol G997, 2000Google Scholar
  136. 136.
    Ball JM, Graham DY, Opekun AR, Gilger MA, Guerrero RA, Estes MK: Recombinant norwalk virus-like particles given orally to volunteers: phase I study. Gastroenterology 117: 40–48, 1999Google Scholar
  137. 137.
    Sato N, Kawakami H, Idota T: Nucleotide and nucleoside supplementation may morphologically promote the differentiation of human Caco-2 cells. J Nutr Sci Vitaminol 46: 175–179, 2000Google Scholar
  138. 138.
    Valdes R, Ortega MA,Casado FJ, Felipe A, Gil A, Sanchez-Pozo A, Pastor-Anglada M: Nutritional regulation of nuceloside transporter expression in rat small intestine. Gastroenterol 119: 1623–1630,2000Google Scholar
  139. 139.
    Shivakumar M, Pramanik K, Bhattacharyya I, Chakravorty A: Chemistry of metal-bound anion radicals. A family of mono-and bis(azophridine) chelates of bivalent ruthenium. Inorg Chem 39: 4332–4338, 2000Google Scholar
  140. 140.
    Sangild PT, Trahair JF, Loftager MK, Fowden AL: Intestinal macromolecule absorption in the fetal pig after insufion of colostrum in utero. Pediatr Res 45: 595–602, 1999Google Scholar
  141. 141.
    Berin MC, Yang PC, Ciok L, Waserman S, Perdue MH: Role for IL-4 in macromolecular transport across human intestinal epithelium. Am J Physiol 276: C1046–C1052, 1999Google Scholar
  142. 142.
    Gauthier R, Laprise P, Cardin E, Harnois C, Plourde A, Reed JC, Vezina A, Vachon PH: Differential sensitivity to apoptosis between the human small and large intestinal mucosae: linkage with segment-specific regulation of BCL-2 homologs and involvement of signaling pathways. J Cell Biochem 82: 339–355, 2001Google Scholar
  143. 143.
    Gay J, Fioramonti J, Garcia-Villar R, Emonds-Alt X, Bueno L: Involvement of tachykinin receptors in sensitisation to cow's milk proteins in guinea pigs. Gut 44: 497–503, 1999Google Scholar
  144. 144.
    Yu LCH, Yang P-C, Berin MC, Leo VD, Conrad DH, Mckay DM, Satoskar AR, Perdue MH: Enhanced transepithelial antigen transport in intestine of allergic mice is mediated by IgE/CD23 and regulated by interleukin-4. Gastroenterology 121: 370–381,2001Google Scholar
  145. 145.
    Debard N, Sierro F, Browning J, Kraehenbuhl J-P: Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer's patches. Gastroenterol 120: 1173–182, 2001Google Scholar
  146. 146.
    Roy K, Mao HQ, Huang SK, Leong KW: Oral gene delivery with chitosan-DNA nanoparticles generates immunololgic protection in a murine model of peanut allergy. Nat Med 5: 387–391, 1999Google Scholar
  147. 147.
    Barley NF, Howard A, O'Callagha D, Legon S, Walters JR: Epithelium calcium transporter expression in human duodenum. Am J Physiol Gastrointest Liver Physiol 280: G285–G290, 2001Google Scholar
  148. 148.
    Charoenphandu H, Limlomwongse L, Krishnamra N: Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol 79: 430–438,2001Google Scholar
  149. 149.
    Barley NF, Prathalingam SR, Zhi P, Legon S, Howard A, Walters JR: Factors involved in the duodenal expression of the human calbindin-D9k gene. Biochem J 341: 491–500, 1999Google Scholar
  150. 150.
    Armbrecht HJ, Boltz MA, Kumar VB: Intestinal plasma membrane calcium pump protein and its induction by 1,25(OH)(2)D(3) decrease with age. Am J Physiol 277: G41–G47, 1999Google Scholar
  151. 151.
    Hattenhauer O, Traebert M, Murer H, Biber J: Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Physiol 277: G756–G762, 1999Google Scholar
  152. 152.
    Bassett ML: Haemochromatosis: iron still matters. Intern Med J31: 237–242, 2001Google Scholar
  153. 153.
    Powell JJ, Jugaohsing R, Thompson RP: The regulation of mineral absorption in the gastrointestinal tract. Proc Nutr Soc 58: 147–153,1999Google Scholar
  154. 154.
    Schumann K, Moret R, Kunzle H, Kuhn LC: Iron regulatory protein as an endogenous sunsor of iron in rat intestinal mucosa. Possible implications for the regulation of iron absorption. Eur J Biochem 260: 362–372, 1999Google Scholar
  155. 155.
    Hoffmann W, Jagla W, Wiede A: Molecular medicine of TFF-peptides: from gut to brain. Histol Histopathol 16: 319–334, 2001Google Scholar
  156. 156.
    Nunez MT, Tapia V: Transferrin stimulates iron absorption, exocytosis, and secretion in cultured intestinal cells. Am J Physiol 276: C1085–C1090, 1999Google Scholar
  157. 157.
    Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, Haile DJ, Vogel W, Weiss G: Expression of the duodenal iron transporters divalentmetal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterol 120: 1412–1419, 2001Google Scholar
  158. 158.
    Trinder D, Oates PS, Thomas C, Sadlier J, Morgan EH: Localisation of divalent metal transporter 1 (DMT1) to the microvillus membrane of rat duodenal enterocytes in iron deficiency, but to hepatocytes in iron overload. Gut 46: 151–152, 2000Google Scholar
  159. 159.
    Oates PS, Thomas C, Freitas E, Callow MJ, Morgan EH: Gene expression of divalent metal transporter 1 and transferrin receptor in duodenum of Belgrade rats. Am J Physiol Gastrointest Liver Physiol 278: G930–G936, 2000Google Scholar
  160. 160.
    Griffiths WJH, Sly WS, Cox TM: Intestinal iron uptake determined by divalent metal transporter is enhanced in HFE-deficient mice with hemochromatosis. Gastroenterol 120: 1420–1429, 2001Google Scholar
  161. 161.
    McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ: A novel duodenal iron-regulated transporter, IREGI, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5: 299–309, 2000Google Scholar
  162. 162.
    Abboud S, Haile DJ: A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275: 19906–19912, 2000Google Scholar
  163. 163.
    Yamaji S, Tennant J, Tandy S, Williams M, Singh Srai SK, Sharp P: Zinc regulates the function and expression of the iron transporters DMT1 and IRE1 in human intestinal Caco-2 cells. FEBS Lett 507: 137–141, 2001Google Scholar
  164. 164.
    Cui W, DeWiutt JG, Miller SM, Wu W: No metal cofactor in orotidine 50-monophosphate decarboxylase. Biochem Biophys Res Commun 259: 133–135, 1999Google Scholar
  165. 165.
    Hinskens B, Philcox JC, Coyle P, Rofe AM: Increased zinc absorption but not secretion in the small intestine of metallothinein-null mice. Biol Trace Elem Res 78: 231–240, 2000Google Scholar
  166. 166.
    Bertolo RF, Bettger WJ, Atkinson SA: Divalent metals inhibit and lactose stimulates zinc transport across brush border membrane vesicles from piglets. J Nutr Biochem 12: 73–80, 2001Google Scholar
  167. 167.
    Malo C, Wilson JX: Glucose modulates vitamin C transport in adult human small intestinal brush border membrane vesicles. J Nutr 130: 63–69, 2000Google Scholar
  168. 168.
    Said HM, Ortiz A, Moyer MP, Yanagawa N: Riboflavin uptake by human-derived colonic epithelial NCM460 cells. Am J Physiol Cell Physiol 278: C270–C276, 2000Google Scholar
  169. 169.
    Said HM, Ortiz A, Kumar CK, Chatterjee N, Dudeja PK, Rubin S: Transport of thiamine in human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2. Am J Physiol 277: C645–C651, 1999Google Scholar
  170. 170.
    Quadros EV, Regec AL, Khan KM, Quardos E, Rothenberg SP: Transcobalamin II synthesized in the intestinal villi facilitates tran-fer of cobalamin to the portal blood. AmJ Physiol 277: G161–G166,1999Google Scholar
  171. 171.
    Cermak R, Evelgunne A, Lawnitzak C, Scharrer E: K( C ) secretion in rat dital jejunum. J Membr Biol 171: 235–243, 1999Google Scholar
  172. 172.
    Alper SL, Rossmann H, Wilhelm S, Stuart-Tilley AK, Shmukler BE, Seidler U: Expression of AE2 anion exchanger in mouse intestine. Am J Physiol 277: G332–G332, 1999Google Scholar
  173. 173.
    Alrefai WA, Tyagi S, Mansour F, Saksena S, Syed I, Ramaswamy K, Dudeja PK: Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am J Physiol Gastrointest Liver Physiol 280: G603–G613,2001Google Scholar
  174. 174.
    Kellum JM, Albuquerque FC, Stoner MC, Harris RP: Stroking human jejunal mucosa induces 5-HT release and Cl-secretion via afferent nuerons and 5-HT4 receptors. Am J Physiol 277: G515–G520, 1999Google Scholar
  175. 175.
    Kita T, Kitamura K, Sakata J, Eto T: Marked increase of guanylin secretion in response to salt loading in the rat small intestine. Am J Physiol 277: G960–G966, 1999Google Scholar
  176. 176.
    Valverde MA, Vazquez E, Munoz FJ, Nobles M, Delaney SJ, Wainwright BJ, Colledge WH, Sheppard DN: Murine CFTR channel and its role in regulatory volume decrease of small intestine crypts. Cell Physiol Biochem 10: 321–328, 2000Google Scholar
  177. 177.
    Park J, Schulz S, Waldman SA: Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterology 119: 89–96, 2000Google Scholar
  178. 178.
    Qian X, Prabhakar S, Nandi A, Visweswariah SS, Goy MF: Expression of GC-C, a receptor-guanylate cyclase, and its endogenous ligands uroguanylin and guanylin along the rostrocaudal axis of the intestine. Endocrinology 141: 3210–3224, 2000Google Scholar
  179. 179.
    Chang T, Lu R, Tsai L: Glutamine ameliorates mechanical obstruction-induced intestinal injury. J Surg Res 95: 133–140, 2001Google Scholar
  180. 180.
    Buresi MC, Schleihauf E, Vergnolle N, Buret A, Wallace JL, Hollenberg MD, MacNaughton WK: Protease-activated receptor-1 stimulates Ca 2 C-dependent Cl¡ secretion in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 281: G323–G332, 2001Google Scholar
  181. 181.
    Hanafy A, Langguth P, Spahn-Langguth H: Pretreatment with potent P-glycoprotein ligands may increase intestinal secretion in rats. Eur J Pharm Sci 12: 405–415, 2001Google Scholar
  182. 182.
    Yoo BC, Fountoulakis M, Dierssen M, Lubec G: Expression patterns of chaperone proteins in cerebral cortex of the fetus with Down syndrome: dysregulation of T-complex protein 1. J Neural Transm Suppl 61: 321–334, 2001Google Scholar
  183. 183.
    Alrefai WA, Tyagi S, Nazir TM, Barakat J, Anwar SS, Hadjiagapiou C, Bavishi D, Sahi J, Malik P, Goldstein J, Layden TJ, Ramaswamy K, Dudeja PK: Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim Biophys Acta 1511: 17–27, 2001Google Scholar
  184. 184.
    Mall AS, McLoed HA, Hickman R, Kahn D, Dent DM: Fragmentation pattern of mucins is normal and diseased gastric mucosae: a glycoprotein fractionates with gastric mucins purified from mucosal scrapings of cancer and peptic ulcer disease. Digestion 60: 216–226, 1999Google Scholar
  185. 185.
    Grubb BR: Ion transport across the normal and CF neonatal murine intestine. Am J Physiol 277: G167–G174, 1999Google Scholar
  186. 186.
    Morris AP, Scott JK, Ball JM, Zeng CQ, O'Neal WK, Estes MK: NSP4 elicits age-dependent diarrhea and Ca(2 C ) mediated I( ¡ ) influx into intestinal crypts of CF mice. Am J Physiol 277: G431–G444, 1999Google Scholar
  187. 187.
    Mourad FH, Nassar CF: Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins. Gut 47: 382–386, 2000Google Scholar
  188. 188.
    Ameen NA, Martensson B, Bourguinon L, Marino C, Isenberg J, McLaughlin GE: CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo.J Cell Sci 112: 887–894, 1999Google Scholar
  189. 189.
    Steagall WK, Drumm ML: Stimulation of cystic fibrosis transmebrane conductance regulator-dependent short-circuit across DeltaF508 murine intestines. Gastroenterol 116: 1379–1388, 1999Google Scholar
  190. 190.
    Malakooti, J, Dahdal RY, Schmidt L, Layden TJ, Dudeja PK, Ramaswamy K: Molecular cloning, tissue distribution, and functional expression of the human Na( C )/H( C ) exchanger NHE2. Am J Physiol 277: G383–G390, 1999Google Scholar
  191. 191.
    Bookstein C, Musch MW, Xie Y, Rao MC, Chang EB: Regulation of intestinal epithelial brush border Na( C )/H( C ) exchanger isoforms, NHE2 and NHE3, in C2bbe cells. J Membr Biol 171: 87–95, 1999Google Scholar
  192. 192.
    Nath SK, Kambadur R, Yun CH, Donowitz M, Tse CM: NHE2 contains subdomains in the COOH terminus for growth factor and protein kinase regulation. Am J Physiol 276: C873–C882, 1999Google Scholar
  193. 193.
    Malakooti J, Dahdal RY, Dudeja PK, Layden TJ, Ramaswamy K: The human Na C /H C exchanger NHE2gene: genomic organization and promoter characterization. Am J Physiol Gastrointest Liver Physiol 280: G763–G773, 2001Google Scholar
  194. 194.
    Falcone RA, Shin CE, Stern LE, Wang Z, Erwin CR, Soleimani M, Warner BW: Differential expression of ileal Na( C )/H( C ) exchanger isoforms after enterectomy. J Surg Res 86: 192–197,1999Google Scholar
  195. 195.
    Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB: SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. AmJ Physiol Gastrointest Liver Physiol 280: G687–G693, 2001Google Scholar
  196. 196.
    Verkman AS: Lessons on renal physiology from transgenic mice lacking aquaporin water channels. J Am Soc Nephrol 10: 1126–1135, 1999Google Scholar
  197. 197.
    Meinild A, Klaerke DA, Loo DD, Wright EM, Zeuthen T: The human Na C-glucose cotransporter is a molecular water pump. J Physiol 508: 15–21, 1998Google Scholar
  198. 198.
    Balasubramanian A, Tao Z, Zhai W, Stein M, Sheriff S, Chance WT, Fischer JE, Eden PE, Taylor JE, Liu CD, McFadden DW, Voisin T, Roze C, Laburthe M: Structure-activity studies including a Psi(CH(2)-NH) scan of peptide YY (PYY) active site, PYY (22–36), for interaction wiht rat intestinal PYY receptors: development of analogues with potent in vivo activity in the intestine. J Med Chem 43: 3420–3427, 2000Google Scholar
  199. 199.
    Fu-Cheng X, Souli A, Chariot J, Roze C: Antisecretory effect of peptide YY through neural receptors in the rat jejunum in vitro. Peptides 20: 987–993, 1999Google Scholar
  200. 200.
    Mannon PJ, Mele JM: Peptide YY Y1 receptor activates mitogen-activated protein kinase and proliferation in gut epithelial cells via the epidermal growth factor. Biochem J 350: 655–651, 2000Google Scholar
  201. 201.
    Lachaux A, Bouvier R, Loras-Duclaux I, Chappuis JP, Meneguzzi G, Ortonne JP: Isolated deficient alpha6beta4 integrin expression in the gut associated with intractable diarrhea. J Pediatr Gastroenterol Nutr 29: 395–401, 1999Google Scholar
  202. 202.
    Mathews CJ, MacLeod RJ, Zheng SX, Hanrahan JW, Bennett HP, Hamilton JR: Characterization of the inhibitory effect of boiled rice on intestinal chloride secretion in guinea pig crypt cells. Gastroenterol 116: 1342–1347, 1999Google Scholar
  203. 203.
    Shah RJ, Fenoglio-Preiser C, Bleau BL, Giannella RA: Usefulness of colonoscopy with biopsy in the evaluation of patients with chronic diarrhea. Am J Gastroenterol 96: 1091–1095, 2001Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Alan B.R. Thomson
    • 1
  • Laurie Drozdowski
    • 1
  • Claudiu Iordache
    • 1
  • Ben K.A. Thomson
    • 1
  • Severine Vermeire
    • 2
  • M. Tom Clandinin
    • 1
  • Gary Wild
    • 2
  1. 1.Nutrition and Metabolism Group, Division of Gastroenterology, Department of MedicineUniversity of AlbertaEdmontonAlberta
  2. 2.Division of Gastroenterology, Department of MedicineMcGill University Health Centre, MontréalQuebecCanada

Personalised recommendations