Advertisement

Journal of Global Optimization

, Volume 27, Issue 1, pp 51–81 | Cite as

Infine Functions, Nonsmooth Alternative Theorems and Vector Optimization Problems

  • Pham Huu Sach
  • Gue Myung LeeEmail author
  • Do Sang Kim
Article

Abstract

In this paper we introduce a new notion of infine nonsmooth functions and give several characterizations of infineness property. We prove alternative theorems with mixed constraints (i.e., inequality and equality constraints) being described by invex-infine nonsmooth functions. We establish a necessary and sufficient condition for a solution of a vector optimization problem involving mixed constraints to be a properly efficient solution.

Keywords

Equality Constraint Real Function Efficient Solution Vector Optimization Vector Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Israel, A. and Mond, B. (1986), What is invexity?, J. Austral.Math. Soc. Ser. B 28, 1-9.Google Scholar
  2. 2.
    Brandao, A. J. V., Rojas-Medar, M. A. and Silva, G. N. (2000), Invex nonsmooth alternative theorem and applications, Optimization, 48, 239-253.Google Scholar
  3. 3.
    Chew, K. L. and Choo, E. U. (1984), Pseudolinearity and efficiency, Math. Programming, 28, 226-239.Google Scholar
  4. 4.
    Clarke, F. H. (1983), Optimization and Nonsmooth Analysis, Wiley-Interscience, New York.Google Scholar
  5. 5.
    Clarke, F. H. (1976), A new approach to Lagange multipliers, Math. Oper. Res. 1, 165-174.Google Scholar
  6. 6.
    Craven, B. D. (1981), Duality for generalized convex fractional programs. In: Schaible, S. and Ziemba,W. T. (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, pp. 473-489.Google Scholar
  7. 7.
    Craven, B. D. (1981), Invex functions and constrained local minimum, Bull. Austral. Math. Soc. 24, 357-366.Google Scholar
  8. 8.
    Craven, B. D. (1986), Nondifferentiable optimization by nonsmooth approximations, Optimization 17, 3-17.Google Scholar
  9. 9.
    Craven, B. D. (1989), Nonsmooth multiobjective programming. Numer. Funct. Anal. Optimz. 10, 49-64.Google Scholar
  10. 10.
    Craven, B. D. (1995), Control and Optimization, Chapman & Hall, London.Google Scholar
  11. 11.
    Craven, B. D. Global invex and duality in mathematical programming, Asia-Pacific Journal of Operations Research (to appear).Google Scholar
  12. 12.
    Craven, B. D., Sach, P. H., Yen, N. D. and Phuong, T. D. (1992), A new class of invex multifunctions. In: Giannessi, F. (ed.), Nonsmooth Optimization: Methods and Applications. Gordon and Breach, London, pp. 52-69.Google Scholar
  13. 13.
    Geoffrion, A. M. (1968), Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22, 618-630.Google Scholar
  14. 14.
    Hanson, M. A. (1981), On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80, 545-550.Google Scholar
  15. 15.
    Hanson, M. A. and Mond, B. (1987), Necessary and sufficient conditions in constrained optimization, Math. Programming 37, 51-58.Google Scholar
  16. 16.
    Hanson, M. A. (1999), Invexity and the Kuhn-Tucker theorem, J. Math. Anal. Appl. 236, 594-604.Google Scholar
  17. 17.
    Mangasarian, O. L. (1969), Nonlinear Programming, McGraw-Hill, New York.Google Scholar
  18. 18.
    Martin, D. H. (1985), The essence of invexity, J. Optim. Th. Appl. 47, 65-76.Google Scholar
  19. 19.
    Phuong, T. D., Sach, P. H. and Yen, N. D. (1995), Strict lower semicontinuity of the level sets and invexity of a locally Lipschitz function, J. Optim. Th. Appl. 87, 579-594.Google Scholar
  20. 20.
    Reiland, T. W. (1990), Nonsmooth invexity, Bull. Austral. Math. Soc. 42, 437-446.Google Scholar
  21. 21.
    Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.Google Scholar
  22. 22.
    Sach, P. H. and Craven B. D. (1991), Invexity in multifunction optimization. Numer. Funct. Anal. Optimiz. 12, 383-394.Google Scholar
  23. 23.
    Sach, P. H. and Craven, B. D. (1991), Invex multifunctions and duality, Numer. Funct. Anal. Optimiz. 12, 575-591.Google Scholar
  24. 24.
    Sach, P. H., Kim, D. S. and Lee, G. M. Invexity as necessary optimality condition in nonsmooth programs, Preprint 2000/30, Hanoi Institute of Mathematics, Vietnam, (submitted).Google Scholar
  25. 25.
    Sach, P. H., Kim, D. S. and Lee, G. M. Generalized convexity and nonsmooth problems of vector optimization, Preprint 2000/31, Hanoi Institute of Mathematics, Vietnam, (submitted).Google Scholar
  26. 26.
    L. A. Tuan, Private communication.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Hanoi Institute of MathematicsBoho, HanoiVietnam
  2. 2.Department of Applied MathematicsPukyong National UniversityPusanRepublic of Korea;Corresponding author; e-mail

Personalised recommendations