Research on Language and Computation

, Volume 1, Issue 3–4, pp 265–305 | Cite as

Syntactic Structures as Multi-dimensional Trees

  • James Rogers


We survey a sequence of results relating model-theoretic and language-theoreticdefinability over an infinite hierarchy of multi-dimensional tree-like structures and explore their applications to a corresponding range of theoriesof syntax. We discuss, in particular, results for Government and Binding Theory(GB), Tree-Adjoining Grammar (TAG) and Generalized Phrase-Structure Grammar(GPSG) along with a generalized version of TAG extending TAG in much the sameway that GPSG extends CFLs. In addition, we look at a hierarchy oflanguage classes, Weir's version of the Control Language Hierarchy, which ischaracterized by definability in our hierarchy and speculate on possiblelinguistic significance of higher levels of these hierarchies.

automata control languages GB GPSG grammars Syntax TAG trees wMSO theories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker T. (1994) Patterns in Metarules. Proceedings of the 3rd TAG+ Workshop, Paris.Google Scholar
  2. Berwick R. C., Weinberg A. S. (1984) The Grammatical Basis of Linguistic Performance. MIT Press.Google Scholar
  3. Büchi J. R. (1960) Weak Second-order Arithmetic and Finite Automata. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 6, pp. 66–92.Google Scholar
  4. Candito M-H. (1996) A Principle-based Hierarchical Representation of LTAGs. Proceedings of COLING-96, Copenhagen.Google Scholar
  5. Chomsky N., Schüzenberger M. P. (1963) The Algebraic Theory of Context-free Languages. In Braffort P., Hirschberg D. (eds.), Computer Programming and Formal Systems, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 2nd (1967) edition, pp. 118–161.Google Scholar
  6. Chomsky N. (1981) Lectures on Government and Binding. Foris Publications, Cinnaminson, NJ.Google Scholar
  7. Chomsky N. (1986) Barriers. MIT Press.Google Scholar
  8. Chomsky N. (1993) A Minimalist Program for Linguistic theory. In The View from Building 20, MIT Press, pp. 1–52.Google Scholar
  9. Doner J. (1970) Tree Acceptors and Some of Their Applications. Journal of Computer and System Sciences, 4, pp. 406–451.Google Scholar
  10. Elgot C. C. (1961) Decision Problems of Finite Automata Design and Related Arithmetics. Transactions of the American Mathematical Society, 98, pp. 21–51.Google Scholar
  11. Evans R., Gazdar G., Weir D. (1995) Encoding Lexicalized Tree Adjoining grammars with a Nonmonotonic Inheritance Hierarchy. Proceedings of the 33rd Annual Meeting of the Association for Computational Linguisitics (ACL'95), Cambridge, MA.Google Scholar
  12. Fong S. (1991) Computational Properties of Principle-Based Grammatical Theories. PhD thesis, MIT.Google Scholar
  13. Gazdar G., Klein E., Pullum G., Sag I. (1985) Generalized Phrase Structure Grammar. Harvard University Press.Google Scholar
  14. Gécseg F., Steinby M. (1984) Tree Automata. Akadémiai Kiadó, Budapest.Google Scholar
  15. Gorn S. (1962) Processors for Infinite Codes of Shannon-Fano Type. Symp. Math. Theory of Automata.Google Scholar
  16. Gorn S. (1967) Explicit Definitions and Linguistic Dominoes. In Hart J. F., Takasu S. (eds.), Systems and Computer Science, Proceedings of the Conference held at University of Western Ontario, 1965, University of Toronto Press.Google Scholar
  17. Huybregts R. (1984) The Weak Inadequacy of Context-free Phrase Structure Grammars. In de Haan G. J., Trommelen M., Zonneveld W. (eds.), Van Periferie Naar Kern, Foris Publications, Dordrecht, pp. 81–99.Google Scholar
  18. Johnson M. (1989) The Use of Knowledge of Language. Journal of Psycholinguistic Research, 18/1, pp. 105–128.Google Scholar
  19. Joshi A. K. (1985) How Much Context-sensitivity is Required to Provide Reasonable Structural Descriptions: Tree Adjoining Grammars. In Dowty D., Karttunen L., Zwicky A. (eds.), Natural Language Processing: Psycholinguistic, Computational and Theoretical Perspectives, Cambridge University Press.Google Scholar
  20. Joshi A. K., Schabes Y. (1991) Fixed and Flexible Phrase Structure: Coordination in Tree Adjoining Grammars. Presented at the DARPA Workshop on Spoken Language Systems, Feb. 1991, Asilomar, CA.Google Scholar
  21. Joshi A. K., Schabes Y. (1992) Tree-adjoining Grammars and Lexicalized Grammars. In Nivat M., Podelski A. (eds.), Tree Automata and Languages, Elsevier Science Publishers B.V., pp. 409–431.Google Scholar
  22. Khabbaz N. A. (1974) A Geometric Hierarchy of Languages. jcss, 8, pp. 142–157.Google Scholar
  23. Langendoen D. T. (1976) On the Weak Generative Capacity of Infinite Grammars. CUNYForum, 1, pp. 13–24.Google Scholar
  24. Lewis H. R. (1979) Unsolvable Classes of Quantificational Formulas. Addison-Wesley.Google Scholar
  25. Manzini M. R. (1992) Locality: A Theory and Some of Its Empirical Consequences. MIT Press, Cambridge, MA.Google Scholar
  26. Palis M. A., Shende S. M. (1995) Pumping Lemmas for the Control Language Hierarchy. Mathematical Systems Theory, 28, pp. 199–213.Google Scholar
  27. Rabin M. O. (1969) Decidability of Second-order Theories and Automata on Infinite Trees. Transactions of the American Mathematical Society, 141, pp. 1–35, July 1969.Google Scholar
  28. Rizzi L. (1990) Relativized Minimality. MIT Press.Google Scholar
  29. Rogers J. (2001) Weak MSO Theories and Control Languages. In preperation.Google Scholar
  30. Rogers J. (1996) What Does a Grammar Formalism Say about a Language. Technical Report IRCS-96-10, Institute for Research in Cognitive Science, University of Pennsylvania, Philadelphia, PA.Google Scholar
  31. Rogers J. (1997a) “Grammarless” Phrase Structure Grammar. Linguistics and Philosophy, 20, pp. 721–746.Google Scholar
  32. Rogers J. (1997b) A Unified Notion of Derived and Derivation Structures in TAG. Proceedings of the Fifth Meeting on Mathematics of Language MOL5 '97, Saarbrücken, FRG.Google Scholar
  33. Rogers J. (1998a) A Descriptive Approach to Language-Theoretic Complexity. Studies in Logic, Language, and Information, CSLI/FoLLI.Google Scholar
  34. Rogers J. (1998b) A Descriptive Characterization of Tree-Adjoining Languages. Proc. of the 17th International Conference on Computational Linguistics (COLING'98) and the 36th Annual Meeting of the Association for Computational Linguistics (ACL'98), ACL, Montreal.Google Scholar
  35. Rogers J. (1998c) On Defining TALs with Logical Constraints. In Abeillé A., Becker T., Rambow O., Satta G., Vijay-Shanker K. (eds.), Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), pp. 151–154.Google Scholar
  36. Rogers J. (1999) Generalized Tree-adjoining Grammar. Sixth Meeting on Mathematics of Language, pp. 189–202.Google Scholar
  37. Rogers J. (2000) wMSO Theories as Grammar Formalisms. Algebraic Methods in Language Processing, Proceedings of the Second AMAST Workshop on Language Processing, TWLT 16, Iowa City, IA, Universiteit Twente, pp. 201–222.Google Scholar
  38. Rounds W. C. (1970) Mappings and Grammars on Trees. Mathematical Systems Theory, 4, pp. 257–287.Google Scholar
  39. Sarkar A., Joshi A. (1996) Coordination in TAG: Formalization and Implementation. Proceedings of COLING'96, Copenhagen.Google Scholar
  40. Schabes Y., Shieber S. M. (1994) An Alternative Conception of Tree-adjoining Derivation. Computational Linguistics, 20/1, pp. 91–124.Google Scholar
  41. Shieber S. M. (1985) Evidence Against the Context-freeness of Natural Language. Linguistics and Philosophy, 8, pp. 333–343.Google Scholar
  42. Smets M. (1998) Comparison of XTAG and LEXSYS Grammars. In Abeillé A., Becker T., Rambow O., Satta G., Vijay-Shanker K. (eds.), Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), pp. 159–163.Google Scholar
  43. Thatcher J. W. (1967) Characterizing Derivation Trees of Context-free Grammars Through a Generalization of Finite Automata Theory. Journal of Computer and System Sciences, 1, pp. 317–322.Google Scholar
  44. Thatcher J. W., Wright J. B. (1968) Generalized Finite Automata Theory with an Application to a Decision Problem of Second-order Logic. Mathematical Systems Theory, 2/1, pp. 57–81.Google Scholar
  45. Vijay-Shanker K., Schabes Y. (1992) Structure Sharing in Lexicalized Tree-adjoining Grammars. Proceedings COLING'92.Google Scholar
  46. Weir D. J. (1988) Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD thesis, University of Pennsylvania.Google Scholar
  47. Weir D. J. (1992) A Geometric Hierarchy Beyond Context-Free Languages. Theoretical Computer Science, 104, pp. 235–261.Google Scholar
  48. Xia F., Palmer M., Vijay-Shanker K., Rosenzweig J. (1998) Consistent Grammar Development Using Partial-Tree Descriptions for Lexicalized Tree-adjoining Grammars. In Abeillé A., Becker T., Rambow O., Satta G., Vijay-Shanker K. (eds.), Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), pp. 180–183.Google Scholar
  49. XTAG Research Group (1998) A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS-98-18, Institute for Research in Cognitive Science.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • James Rogers
    • 1
  1. 1.Department of Computer ScienceEarlham CollegeRichmondUSA (E-mail

Personalised recommendations