Advertisement

Space Science Reviews

, Volume 106, Issue 1–4, pp 175–196 | Cite as

Nitrogen Isotopes on the Moon: Archives of the Solar and Planetary Contributions to the Inner Solar System

  • B. Marty
  • K. Hashizume
  • M. Chaussidon
  • R. Wieler
Article

Abstract

The two isotopes of nitrogen, 14N and 15N, have relative abundances extremely variable among solar system reservoirs such as planets and their atmospheres, primitive and differentiated meteorites, and comets. Expressed in the delta notation (δ15N = {[15N/14N]sample/[15N/14N]standard−1} × 1000, in parts per mil, or ‰., where the standard is atmospheric N having 15N/14N = 0.003676), δ15N ranges from −250‰. (the lower limit of lunar soil values) up to 1600‰. (measured in the meteorites benccubinites). The lunar surface constitutes a unique archive of the past corpuscular (solar and meteoritic) contributions to planetary surfaces. Nitrogen trapped in the lunar regolith presents a highly variable isotopic composition, which represents either secular variation of the solar wind composition although this possibility conflicts with the apparent isotope stability over time of other solar wind volatile elements, or more likely different contributions from solar corpuscular radiation and non-solar sources. In this case, the solar nitrogen component is depleted by more than 24% in 15N, whereas non-solar, planetary sources (meteorites, micrometeorites, possibly comets) are enriched in the heavy isotope of nitrogen by ≥10% on average. Variations in the nitrogen isotopic composition of lunar soils are explained by a secular change in the strength of the planetary flux, and a correlation between N isotopic compositions and surface exposure age for different soils suggest that the planetary contribution to the inner solar system might have increased in the last 0.4 Gy. The variability of the N isotope composition among solar system objects might be due to incomplete equilibration of nitrogen isotopes from different host phases of pre-solar origin. Alternatively, it could result from mixing between 15N-depleted protosolar nitrogen originally present in the gas and presolar solid (organic?) compounds enriched in 15N.

Keywords

Solar Wind Solar System Nitrogen Isotope Lunar Surface Lunar Regolith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.G., and Smith, D.: 1981, '14N/15N Isotope Fractionation in the Reaction N2H+ + N2: Interstellar Significance', Astrophys. J. 247, L123–L125.CrossRefADSGoogle Scholar
  2. Aléon, J., Robert, F., Chaussidon, M., and Engrand, C.: 2002, '15N Excesses in Deuterated Organics from two Interplanetary Dust Particles', Lunar Planet Sci. XXXIII, abstract #1397 (CD ROM).Google Scholar
  3. Anders, E., and Grevesse, N.: 1989, 'Abundances of the Elements: Meteoritic and Solar', Geochim. Cosmochim. Acta 53, 197–214.CrossRefADSGoogle Scholar
  4. Assonov, S.S., Marty, B., Shukolyukov, Y.A., and Semenova, A.S.: 2001, 'Nitrogen and Argon Isotopes in Single Particles from Luna-24 Regolith: Search for the Modern Solar Wind Component', Lunar Planet Sci. XXXIII, 1798.Google Scholar
  5. Assonov, S.S., Franchi, I.A., Pillinger, C.T., Semenova, A.S., Shukolyukov, Y.A., Verchovsky, A.B., and Iassevitch, A.N.: 2002, 'Nitrogen and Argon Release Profiles in Luna-16 and Luna-24 Regolith Samples: The Effects of Regolith Re-working', Met. Planet. Sci. 37, 27–48.ADSGoogle Scholar
  6. Becker, R.H., and Clayton, R.N.: 1975, 'Nitrogen Abundances and Isotopic Compositions in Lunar Samples', Proc. 6th Lunar Sci. Conf., 2131-2149.Google Scholar
  7. Becker, R.H., and Clayton, R.N.: 1978, 'Nitrogen Isotope Systematics of two Apollo 12 Soils', Proc. 9th Lunar Sci. Conf., 1619–1627.Google Scholar
  8. Becker, R.H., Clayton, R.N., and Mayeda, T.K.: 1976, 'Characterization of Lunar Nitrogen Components', Proc. 7th Lunar Planet. Sci. Conf., 441–458.Google Scholar
  9. Brenemann, H.H., and Stone, E.C.: 1985, 'Solar Coronal and Photospheric Abundances from Solar Energetic Particle Measurements', Astrophys. J. 299, L57–L61.CrossRefADSGoogle Scholar
  10. Brilliant, D.R., Franchi, I.A., and Pillinger, C.T.: 1994, 'Nitrogen Components in Lunar Soil 12023 — Complex Grains are not the Carrier of Isotopically Light Nitrogen', Meteoritics 29, 718–723.ADSGoogle Scholar
  11. Chaussidon, M., and Robert, F.: 1999, 'Lithium Nucleosynthesis in the Sun Inferred from Solar-wind 7Li/6Li Ratio', Nature 402, 270–273.CrossRefADSGoogle Scholar
  12. Clayton, R.N., and Thiemens, M.H.: 1980, 'Lunar Nitrogen: Evidence for Secular Change in the Solar Wind', in, R.O. Pepin, J.A. Eddy, and R.B. Merrill (eds.), The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites, Pergamon Press, New York and Oxford, pp. 463–473.Google Scholar
  13. Culler, T.S., Becker, T.A., Muller, R.A., and Renne, P.R.: 2000, 'Lunar Impact History from Ar-40/Ar-39 Dating of Glass Spherules', Science 287, 1785–1788.CrossRefADSGoogle Scholar
  14. Dauphas, N., and Marty, B.: 1999, 'Heavy Nitrogen in Carbonatites of the Kola Peninsula: A Possible Signature of the Deep Mantle', Science 286, 2488–2490.CrossRefGoogle Scholar
  15. Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Krähenbühl, U., Schwaller, H., Schwarzmüller, J., and Stettler, A.: 1970, 'Trapped Solar Wind Noble Gases, Exposure Age and K/Ar-age in Apollo 11 Lunar Fine Material', Proc. Apollo 11 Lunar Sci. Conf., Vol. 2, pp. 1037–1070.ADSGoogle Scholar
  16. Engrand, C., and Maurette, M.: 1998, 'Carbonaceous Micrometeorites from Antartica', Met. Planet. Sci. 33, 565–580.ADSCrossRefGoogle Scholar
  17. Eugster, O., Terribilini, D., Polnau, E., and Kramers, J.: 2001, 'The Antiquity Indicator Argon-40/Argon-36 for Lunar Surface Samples Calibrated by Uranium-235-Xenon-136 Dating', Met. Planet. Sci. 36, 1097–1115.ADSGoogle Scholar
  18. Fisk, L. A.: 1978, 'He-3-rich Flares — A Possible Explanation', Astrophys. J. 190, L35-L38.CrossRefADSGoogle Scholar
  19. Fouchet, T., Lellouch, E., Bézard, B., Encrenaz, T., Drossart, P., Feuchtgruber, H., and deGraauw, T.: 2000, 'ISO-SWS Observation of Jupiter: Measurement of the Ammonia Tropospheric Profile and of the 15N/14N Ratio', Icarus 143, 223–243.CrossRefADSGoogle Scholar
  20. Franchi, I.A., Wright, I.P., and Pillinger, C.T.: 1986, 'Heavy Nitrogen in Bencubbin — A Light-element Isotopic Anomaly in a Stony-iron Meteorite', Nature 323, 138–140.CrossRefADSGoogle Scholar
  21. Frick, U., Becker, R.H., and Pepin, R.O.: 1988, 'Solar Wind Record in the Lunar Regoltih: Nitrogen and Noble Gases, Proc. 18th Lunar Planet. Sci. Conf., 87–120.Google Scholar
  22. Futagami, T., Ozima, M., and Nakamura, Y.: 1990, 'Helium Ion Implantation Into Minerals', Earth Planet. Sci. Lett. 101, 63–67.CrossRefADSGoogle Scholar
  23. Geiss, J., and Bochsler, P.: 1982, 'Nitrogen Isotopes in the Solar System', Geochim. Cosmochim. Acta 46, 529–548.CrossRefADSGoogle Scholar
  24. Geiss, J., and Gloeckler, G.: 2003, 'Isotopic Composition of H, He and Ne in the Protosolar Cloud', Space Sci. Rev., this volume.Google Scholar
  25. Geiss, J., Gloecker, G., and von Steiger, R.: 1973, 'Solar Wind Composition and Implications About the History of the Solar System', Proc. 13th Int. Cosmic Ray Conf., 3375–3398.Google Scholar
  26. Grady, M.M., and Pillinger, C.T.: 1990, 'ALH 85085: Nitrogen Isotope Analysis of a Highly Unusual Primitive Meteorite', Earth Planet. Sci. Lett. 97, 29–40.CrossRefADSGoogle Scholar
  27. Grady, M.M., Wright, I.P., Carr, L.P., and Pillinger, C.T.: 1986, 'Compositional Differences in Enstatite Chondrites Based on Carbon and Nitrogen Stable Isotope Measurements', Geochim. Cosmochim. Acta 50, 2799–2813.CrossRefADSGoogle Scholar
  28. Grieve, R.A.F., and Shoemaker, E.M.: 1994, 'The Record of Past Impact on Earth', in T. Gehrels, M.S. Matthews, and A. Schumann (eds.), Hazards due to Comets and Asteroids, Univ. Arizona Press, pp. 417–462.Google Scholar
  29. Haggerty, S.: 1978, 'The Redox State of Planetary Basalts', Geophys. Res. Lett. 5, 443–446.ADSGoogle Scholar
  30. Hashizume, K., and Sugiura, N.: 1995, 'Nitrogen Isotopes in Bulk Ordinary Chondrites', Geochim. Cosmochim. Acta 59, 4057–4069.CrossRefADSGoogle Scholar
  31. Hashizume, K., Chaussidon, M., Marty, B., and Robert, F.: 2000, 'Solar Wind Record on the Moon: Deciphering Presolar From Planetary Nitrogen', Science 290, 1142–1145.CrossRefADSGoogle Scholar
  32. Hashizume, K., Chaussidon, M., Marty, B., and Robert, F.: 2001, 'Isotopic Variability of Nitrogen in Lunar Regolith — Response', Science 293, 1947a.Google Scholar
  33. Hashizume, K., Marty, B., and Wieler, R.: 2002, 'Analyses of Nitrogen and Argon in Single Lunar Grains: Towards a Quantification of the Asteroidal Contribution to Planetary Surfaces', Earth Planet. Sci. Lett. 202, 201–216.CrossRefADSGoogle Scholar
  34. Humbert, F., Marty, B., and Libourel, G.: 1999, 'Enhanced Solubility of Nitrogen in Basaltic Melt Under Reducing Conditions: A Way to Enrich Nitrogen Relative to Noble Gases during Planetary Formation', Lunar Planet. Sci. XXX, abstract #1955 (CD ROM).Google Scholar
  35. Hundhausen, A.J., Bame, S.J., Ashbridge, J.R., and Sydoriak, S.J.: 1970, 'Solar Wind Proton Properties: Vela 3 Observations From July 1965 to July 1967', J. Geophys. Res. 75, 4643–4651.CrossRefADSGoogle Scholar
  36. Jewitt, D.C., Matthews, H.E., Owen, T., and Meier, R.: 1997, 'Measurements of C-12/C-13, N-14/N-15, and S-32/S-34 Ratios in Comet Hale-Bopp (C/1995 O1)', Science 278, 90–93.CrossRefADSGoogle Scholar
  37. Kallenbach, R.: 2003, 'Isotopic Fractionation by Plasma Processes', Space Sci. Rev., this volume.Google Scholar
  38. Kallenbach, R., Geiss, J., Ipavich, F.M., Gloeckler, G., Bochsler, P., Gliem, F., Hefti, S., Hilchenbach, M., and Hovestadt, D.: 1998, 'Isotopic Composition of Solar Wind Nitrogen: First in Situ Determination with the CELIAS/MTOF Spectrometer on Board SOHO', Astrophys. J. 507, L185–L188.CrossRefADSGoogle Scholar
  39. Kallenbach, R., Robert, F., Geiss, J., Herbst, E., Lammer, H., Marty, B., Millar, T., Ott, U., and Pepin, R.O.: 2003, 'Sun and Protosolar Nebula', Space Sci. Rev., this volume.Google Scholar
  40. Keller, L.P., and McKay, D.S.: 1997, 'The Nature and Origin of Rims on Lunar Soil Grains', Geochim. Cosmochim. Acta 61, 2331–2341.CrossRefADSGoogle Scholar
  41. Kerridge, J.F.: 1975, 'Solar Nitrogen: Evidence for a Secular Change in the Ratio of Nitrogen-15 to Nitrogen-14', Science 188, 162–164.ADSGoogle Scholar
  42. Kerridge, J.F.: 1985, 'Carbon, Hydrogen, and Nitrogen in Carbonaceous Chondrites: Abundances and Isotopic Compositions in Bulk Samples', Geochim. Cosmochim. Acta 49, 1707–1714.CrossRefADSGoogle Scholar
  43. Kerridge, J.F.: 1993, 'Long-term Compositional Variation in Solar Corpuscular Radiation: Evidence From Nitrogen Isotopes in the Lunar Regolith', Rev. Geophys. 31, 423–437.CrossRefADSGoogle Scholar
  44. Kerridge, J.F., Kaplan, I.R., Petrowski, C., and Chang, S.: 1975, 'Light Element Geochemistry of the Apollo 16 Site', Geochim. Cosmochim. Acta 39, 137–162.CrossRefADSGoogle Scholar
  45. Kerridge, J.F., Eugster, O., Kim, J.S., and Marti, K.: 1991, 'Nitrogen Isotopes in the 74001/74002 Double-drive Tube From Shorty Crater', Proc. 21st Lunar Planet. Sci. Conf., 291–299.Google Scholar
  46. Kim, J.S., Kim, Y., Marti, K., and Kerridge, J.F.: 1995, 'Nitrogen Isotope Abundances in the Recent Solar Wind', Nature 375, 383–385.CrossRefADSGoogle Scholar
  47. Kurat, G., Koeberl, C., Presper, T., Branstätter, F., and Maurette, M.: 1994, 'Petrology and Geochemistry of Antarctic Micrometeorites', Geochim. Cosmochim. Acta 58, 3879–3904.CrossRefADSGoogle Scholar
  48. Love, S., and Brownlee, D.E.: 1993, 'A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust', Science 262, 550–553.ADSGoogle Scholar
  49. Manka, R.H., and Michel, F.C.: 1971, 'Lunar Atmosphere as a Source of Lunar Surface Elements', Proc. 22nd Lunar Sci. Conf., Vol. 2, 1717–1728.ADSGoogle Scholar
  50. Marty, B., and Zimmermann, L.: 1999, 'Volatiles (He, C, N, Ar) in Mid-ocean Ridge Basalts: Assesment of Shallow-level Fractionation and Characterization of Source Composition', Geochim. Cosmochim. Acta 63, 3619–3633.CrossRefADSGoogle Scholar
  51. Marty, B., Matrajt, G., Zimmermann, L., Engrand, C., and Duprat, J.: 2002, 'Nitrogen and Noble Gas Isotopes in Antarctic Micrometeorites', Lunar Planet. Sci. Conf. XXXIII, abstract #1578 (CD ROM).Google Scholar
  52. Mathew, K.J., and Marti, K.: 2001a, 'Lunar Nitrogen: Indigenous Signature and Cosmic-ray Production Rate', Earth Planet. Sci. Lett. 184, 659–669.CrossRefADSGoogle Scholar
  53. Mathew, K.J., and Marti, K.: 2001b, 'Early Evolution of Martian Volatiles: Nitrogen and Noble Gas Components in ALH84001 and Chassigny.', J. Geophys. Res. 106, 1401–1422.CrossRefADSGoogle Scholar
  54. Mathew, K.J., Kerridge, J.F., and Marti, K.: 1998, 'Nitrogen in Solar Energetic Particles: Isotopically Distinct From Solar Wind', Geophys. Res. Lett. 25, 4293–4296.CrossRefADSGoogle Scholar
  55. Maurette, M.: 1998. 'Carbonaceous Micrometeorites and the Origin of Life', Orig. Life Evol. Biosphere 28, 385–412.CrossRefADSGoogle Scholar
  56. Messenger, S.: 2000, 'Identification of Molecular-cloud Material in Interplanetary Dust Particles', Nature 404, 968–971.CrossRefADSGoogle Scholar
  57. Mewaldt, R.A., Ogliore, R.C., Gloeckler, G., and Mason, G.M.: 2001, 'A New Look at Neon-C and SEP-neon', AIP Conf. Proc. 598, 393–398.ADSGoogle Scholar
  58. Morgan, J.W., Krähenbühl, U., Ganapathy, R., and Anders, E.: 1972, 'Trace Elements in Apollo 15 Samples: Implications for Meteoritic Influx and Volatile Depletion on the Moon', Proc. 3rd Lunar Sci. Conf., 1361–1376.Google Scholar
  59. Murty, S.V.S., and Goswami, J.N.: 1992, 'Nitrogen, Noble Gases and Nuclear Tracks in Lunar Meteorites MMAC88104/105', Proc. 22nd Lunar Planet. Sci. Conf., 225–237.Google Scholar
  60. Murty, S.V.S., and Mohapatra, R.K.: 1997, 'Nitrogen and Heavy Noble Gas Components in the ALH84001: Signatures of Ancient Martian Atmosphere', Geochim. Cosmochim. Acta 61, 5417–5428.CrossRefADSGoogle Scholar
  61. Nier, A.O., and McElroy, M.B.: 1977, 'Composition and Structure of Mars' Upper Atmosphere: Results From the Neutral Mass Spectrometers on Viking 1 and 2', J. Geophys. Res. 82, 4341–4349.ADSGoogle Scholar
  62. Nittler, L.R., Hoppe, P., Alexander, C.M., Amari, S., Eberhardt, P., Gao, X., Lewis, R.S., Strebel, R., Walker, R.M., and Zinner, E.: 1995, 'Silicon Nitride From Supernovae', Astrophys. J. 453, L25–L28.CrossRefADSGoogle Scholar
  63. Ott, U.: 2003, 'Isotopes of Volatiles in Pre-solar Grains', Space Sci. Rev., this volume.Google Scholar
  64. Owen, T., Mahaffy, P.R., Niemann, H.B., Atreya, S., and Wong, M.: 2001, 'Protosolar Nitrogen', Astrophys. J. 553, L77–L79.CrossRefADSGoogle Scholar
  65. Paesold, G., Kallenbach, R., and Benz, A.O.: 2002, 'Acceleration and Enrichment of 3He in Impulsive Flares by Electron Firehose Waves', Astrophys. J., in press.Google Scholar
  66. Prombo, C.A., and Clayton, R.N.: 1985, 'A Striking Nitrogen Anomaly in the Bencubbin and Weatherford Meteorites', Science 230, 935–937.ADSGoogle Scholar
  67. Prombo, C.A., and Clayton, R.N.: 1993, 'Nitrogen Isotopic Compositions of Iron Meteorites', Geochim. Cosmochim. Acta 57, 3749–3761.CrossRefADSGoogle Scholar
  68. Reedy, R.C.: 1981, 'Cosmic-ray-produced Stable Nuclides: Various Production Rates and their Implications', Proc. 12th Lunar Planet. Sci. B, Lunar Planet. Inst., Houston, 1809–1823.Google Scholar
  69. Stadermann, F.J., and Floss, C.: 2001, 'Heating Experiments of Individual Particles From the Renazzo Matrix: SIMS Measurements of Nitrogen Isotopes', Met. Planet. Sci. 36, A196–A197.Google Scholar
  70. Terzieva, R., and Herbst, E.: 2000, 'The Possibility of Nitrogen Isotopic Fractionation in Interstellar Clouds', Month. Not. Roy. Astron. Soc. 317, 563–568.CrossRefADSGoogle Scholar
  71. Thiemens, M.H., and Clayton, R.N.: 1980, 'Solar and Cosmogenic Nitrogen in the Apollo 17 Deep Drill Core', Proc. 11th Lunar Planet. Sci. Conf., 1435–1451.Google Scholar
  72. Wieler, R.: 1998, 'The Solar Noble Gas Record in Lunar Samples and Meteorites', Space Sci. Rev. 85, 303–314.CrossRefADSGoogle Scholar
  73. Wieler, R., and Baur, H.: 1994, 'Krypton and Xenon From the Solar Wind and Solar Energetic Particles in two Lunar Ilmenites of Different Antiquity', Meteoritics 29, 570–580.ADSGoogle Scholar
  74. Wieler, R., and Heber, V.S.: 2003, 'Noble Gas Isotopes on the Moon', Space Sci. Rev., this volume.Google Scholar
  75. Wieler, R., Kehm, K., Meshik, A.P., and Hohenberg, C.: 1996, 'Secular Changes in the Xenon and Krypton Abundances in the Solar Wind Recorded in Single Lunar Grains', Nature 384, 46–49.CrossRefADSGoogle Scholar
  76. Wieler, R., Humbert, F., and Marty, B.: 1999, 'Evidence for a Predominantly Non-solar Origin of Nitrogen in the Lunar Regolith Revealed by Single Grain Analyses', Earth Planet. Sci. Lett. 167, 47–60.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Marty
    • 1
    • 2
  • K. Hashizume
    • 3
  • M. Chaussidon
    • 1
  • R. Wieler
    • 4
  1. 1.CRPG-CNRSVandoeuvre-lès-Nancy CedexFrance
  2. 2.Ecole Nationale Supérieure de GéologieVandoeuvre-lès-Nancy CedexFrance
  3. 3.Department of Earth & Space SciencesOsaka UniversityToyonaka, OsakaJapan
  4. 4.Institute for Isotope Geology and Mineral ResourcesETH Zürich, ZürichSwitzerland

Personalised recommendations