Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 75, Issue 1, pp 49–55 | Cite as

Superoxide dismutase activity in callus from the C3-CAM intermediate plant Mesembryanthemum crystallinum

  • Ireneusz Ślesak
  • Marta Libik
  • Zbigniew Miszalski
Article

Abstract

In light-grown callus obtained from M. crystallinum hypocotyls, three classes of superoxide dismutase (SOD): Mn-, Fe- and Cu/ZnSOD were identified. Callus cultured on a medium containing 0.4 M NaCl showed an increase in FeSOD activity on day 4 of the experiment. In contrast, Cu/ZnSOD activity was higher over 16 days of the experiment. Salinity stress induces oxidative stress mainly for the cytosolic SOD form (Cu/ZnSOD). After 16 days of callus culture on salt-containing medium, diurnal malate oscillations, and an increase in NADP-malic enzyme activity were noticed. These results strongly suggest that C3-CAM transition can also be expressed at the cellular level. Therefore, callus tissue could be a useful model, similar to a whole plant, for investigation of mechanisms of stress responses in M. crystallinum.

callus CAM (Crassulacean acid metabolism) NADP-malic enzyme oxidative stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams P, Thomas JC, Vernon DM, Bohnert HJR & Jensen G (1992) Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33: 1215–1223Google Scholar
  2. Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ & Griffiths H (1998) Growth and development of Mesem-bryanthemum crystallinum (Aizoaceae). New Phytol. 138: 171–190Google Scholar
  3. Alscher RG, Donahue IL & Cramer CL (1995) Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant. 100: 224–233Google Scholar
  4. Alscher RG, Erturk N & Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341Google Scholar
  5. Bartosz G (1997) Oxidative stress in plants. Acta Physiol. Plant. 19: 47–64Google Scholar
  6. Beauchamp C & Fridovich I (1971) Superoxide dismutase: Im-proved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287Google Scholar
  7. Ben-Hayyim G, Holland D & Eshdat Y (1999) Salt-induced pro-teins related to oxidative stress: PHGPX and other proteins of the Halliwell-Asada cycle. In: Smallwood MF, Calvert CM & Bowles DJ (eds) Plant Responses to Environmental Stress (pp. 185–189). BIOS Scientific Publishers LimitedGoogle Scholar
  8. Bellaire BA, Carmody J, Braud J, Gosset DR, Banks SW, Lucas MC & Fowler TE (2000) Involvement of abscisic acid-dependent and-independent pathways in the regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic. Res. 33: 531–545Google Scholar
  9. Bohnert HJ & Cushman JC (2000) The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19: 334–346Google Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254Google Scholar
  11. Broetto F, Lüttge U & Ratajczak R (2002) Influence of high light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct. Plant Biol. 29: 13–23Google Scholar
  12. Brulfert J, Mricha A, Sossountzov L & Querioz O (1987) CAM induction by photoperiodism in green callus cultures from a CAM plant. Plant Cell Environ. 10: 443–449Google Scholar
  13. Bueno P, Piqueras A, Kurepa J, Savouré A, Verbruggen N, Van Montagu M & Inzé D (1998) Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 138: 27–34Google Scholar
  14. Cushman J C & Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 305–332Google Scholar
  15. Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D & Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. CMLS Cell Mol. Life Sci. 57: 779–795Google Scholar
  16. Demmig B & Winter K (1986) Sodium, potassium, chloride and proline concentrations of chloroplasts isolated from a halophyte Mesembryanthemum crystallinum L. Planta 168: 421–426Google Scholar
  17. Dittrich P (1976) Nicotinamide adenine dinucleotide-specific ‘malic’ enzyme in Kalanchoe daigremontiana and other plants exhibiting Crassulacean acid metabolism. Plant Physiol. 57: 310–314Google Scholar
  18. Eastmond PJ & Ross J D (1997) Evidence that the induction of crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signalling. Plant Cell Environ. 20: 1559–1565Google Scholar
  19. Foyer CH & Noctor G (2000) Oxygen processing in photo-synthesis: regulation and signalling. New Phytol. 146: 359–388Google Scholar
  20. Gosset DR, Millhollon EP, Lucas MC, Banks SW & Marney M-M (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep. 13: 498–503Google Scholar
  21. Gueta-Dahan Y, Yaniv Z, Zilinskas BA & Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460–469Google Scholar
  22. Haag-Kerwer A, Franco AC & Lüttge U (1992) The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J. Exp. Bot. 43: 345–352Google Scholar
  23. Kluge M, Hell R, Pfeffer A & Kramer D (1987) Structural and metabolic properties of green tissue cultures from a CAM plant, Kalanchoë blossfeldiana hybr. Montezuma. Plant Cell Environ. 10: 451–462Google Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–687Google Scholar
  25. Lescure AM (1969) Mutagenése et sélection de cellules d'Acer pseudoplatanus L. cultivées in vitro. Physiol. Veg. 7: 237–250Google Scholar
  26. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148: 4–14Google Scholar
  27. Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in adaptation of plants to salinity. New Phytol. 125: 59–71Google Scholar
  28. Malda G, Backhaus RA & Martin C (1999) Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell Tiss. Org. Cult. 58: 1–9Google Scholar
  29. Miszalski Z, ?lesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U & Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crys-tallinum L. Plant Cell Environ. 21: 169–179Google Scholar
  30. Miszalski Z, Niewiadomska E, ?lesak I, Lüttge U, Kluge M & Ratajczak R (2001) The effect of irradiation on carboxylating / decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress. Plant Biol. 3: 1–7Google Scholar
  31. Möllering H (1985) L-(-)-Malate. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis Vol. 7 (pp. 39–47). VHC Verlag-sgesellschaft, WeinheimGoogle Scholar
  32. Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–479Google Scholar
  33. Niewiadomska E, Miszalski Z, ?lesak I & Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryan-3 themum crystallinum L. leaves. Free Radic. Res. 31: s251–256Google Scholar
  34. Olmos E, Hernandez JA, Sevilla F & Hellin E (1994) Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J. Plant Physiol. 144: 594–598Google Scholar
  35. Ratajczak R, Richter J & Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crys-tallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ. 17: 1101–1112Google Scholar
  36. Rockel B, Ratajczak R, Becker A & Lüttge U (1994) Changed densities and diameters of intra-membrane tonoplast particles of Mesembryanthemum crystallinum in correlation with NaCl-induced CAM. J. Plant Physiol. 143: 318–324Google Scholar
  37. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12Google Scholar
  38. ?lesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R & Karpinski S (2002) Redox control of oxidative stress re-sponses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol. Biochem. 40: 669–677Google Scholar
  39. Thomas JC, De Armond RL & Bohnert HJ (1992) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension culture. Plant Physiol. 98: 26–631Google Scholar
  40. Treichel S, Hettfleisch H, Eilhardt S, Faist K & Kluge M (1988) A possible induction of CAM by NaCl-stress in heterothropic cell suspension cultures of Mesembryanthemum crystallinum. J. Plant Physiol. 133: 419–429Google Scholar
  41. Vera-Estrella R, Barkla BJ, Bohnert HJ & Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207: 426–435Google Scholar
  42. Vranová E, Inzé D & Van Breusegem F (2002) Signal transduction during oxidative stress. J. Exp. Bot. 53: 1227–1236Google Scholar
  43. Wen H, Wagner J & Larcher W(1997) Growth and nocturnal acid accumulation during early ontogeny of Agave attenuata grown in nutrient solution and in vitro culture. Biol. Plant. 39: 1–11Google Scholar
  44. Willenbrink ME & Husemann W (1995) Photoautotrophic cell suspension cultures from Mesembryanthemum crystallinum and their response to salt stress. Bot. Acta 108: 497–504Google Scholar
  45. Winicow I & Bastola DR (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiol. Plant. 19: 435–449Google Scholar
  46. Yen HE, Zhang D, Lin J-H, Edwards G-E & Ku MSB (1997) Salt-induced changes in protein composition in light-grown callus of Mesembryanthemum crystallinum. Physiol. Plant 101: 526–532Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ireneusz Ślesak
    • 1
  • Marta Libik
    • 1
  • Zbigniew Miszalski
    • 1
  1. 1.Department of Plant PhysiologyPolish Academy of SciencesKrakówPoland

Personalised recommendations