Journal of Statistical Physics

, Volume 112, Issue 5–6, pp 1177–1206 | Cite as

Two-Time-Scale Relaxation Towards Thermal Equilibrium of the Enigmatic Piston

  • Christian Gruber
  • Séverine Pache
  • Annick Lesne


We investigate the evolution of a system composed of N non-interacting point particles of mass m in a container divided into two chambers by a movable adiabatic piston of mass Mm. Using a two-time-scale perturbation approach in terms of the small parameter α=2m/(M+m), we show that the evolution towards thermal equilibrium proceeds in two stages. The first stage is a fast, deterministic, adiabatic relaxation towards mechanical equilibrium. The second stage, which takes place at times \(\mathcal{O}\)(M), is a slow fluctuation-driven, diathermic relaxation towards thermal equilibrium. A very simple equation is derived which shows that in the second stage, the position of the piston is given by X M (t)= L[1/2−ξ(αt)] where the function ξ is independent of M. Numerical simulations support the assumptions underlying our analytical derivations and illustrate the large mass range in which the picture holds.

Liouville equation adiabatic mechanical equilibrium thermal equilibrium perturbation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. Callen, Thermodynamics (Wiley, New York, 1963), Appendix C. See also H. B. Callen, Thermodynamics and Thermostatics, 2nd ed. (Wiley, New York, 1985), pp.51 and 53.Google Scholar
  2. 2.
    A. L. Clark and L. Katz, Resonance method for measuring the ratio of specific heats of a gas, Cp/Cv, Canad. J. Res. 18(2):23–38 (1940) (Part I) and A. L. Clark and L. Katz, Resonance method for measuring the ratio of specific heats of a gas, Cp/Cv, Canad. J. Res. 18 (3):39–53 (Part II) (1940).Google Scholar
  3. 3.
    O. L. de Lange and J. Pierrus, Measurement of bulk moduli and ratio of specific heats of gases using Rńuchardt's experiment, Amer. J. Phys. 68:265–270 (2000).Google Scholar
  4. 4.
    E. Lieb and J. Yngvason, Physics and mathematics of the second law of thermodynamics, Phys. Rep. 310:1–99 (1999).Google Scholar
  5. 5.
    E. Lieb, Some problems in statistical mechanics that I would like to see solved, Physica A 263:491–499 (1999).Google Scholar
  6. 6.
    Ch. Gruber, Thermodynamics of systems with internal adiabatic constraints: Time evolution of the adiabatic piston, Eur. J. Phys. 20:259–266 (1999).Google Scholar
  7. 7.
    J. Piasecki and Ch. Gruber, From the adiabatic piston to macroscopic motion induced by fluctuations, Physica A 265:463–472 (1999).Google Scholar
  8. 8.
    Ch. Gruber and J. Piasecki, Stationary motion of the adiabatic piston, Physica A 268:412(1999)Google Scholar
  9. 9.
    Ch. Gruber and L. Frachebourg, On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states, Physica A 272:392(1999).Google Scholar
  10. 10.
    Ch. Gruber, S. Pache, and A. Lesne, Deterministic motion of the controversial piston in the thermodynamic limit, J. Stat. Phys. 108:669–701 (2002).Google Scholar
  11. 11.
    G. P. Morris and Ch. Gruber, Strong and weak damping in the adiabatic motion of the simple piston, J. Stat. Phys. 109:549–568 (2002).Google Scholar
  12. 12.
    C. T. J. Alkemade, N. G. van Kampen, and D. K. C. MacDonald, Non-linear Brownian motion of a generalized Rayleigh model, Proc. Roy. Soc. A 271:449–471 (1963).Google Scholar
  13. 13.
    J. L. Lebowitz, J. Piasecki, and Ya. Sinai, in Hard Ball Systems and the Lorentz Gas, Encyclopedia of Mathematical Sciences Series, Vol. 101, D. Szász, ed. (Springer-Verlag, Berlin, 2000), pp. 217–227.Google Scholar
  14. 14.
    N. Chernov, Ya. G. Sinai, and J. L. Lebowitz, Scaling dynamic of a massive piston in a cube filled with ideal gas: Exact results, to appear in J. Stat. Phys. (2001).Google Scholar
  15. 15.
    T. Munakata and H. Ogawa, Dynamical aspects of an adiabatic piston, Phys. Rev. E 64:036119(2001).Google Scholar
  16. 16.
    J. A. White, F. L. Roman, A. Gonzales, and S. Velasco, The "adiabatic" piston at equilibrium: Spectral analysis and time-correlation function, Europhys. Lett. 59:459–485 (2002).Google Scholar
  17. 17.
    E. Kestemont, C. Van den Broeck, and M. Malek Mansour, The "adiabatic" piston: And yet it moves, Europhys. Lett. 49:143(2000).Google Scholar
  18. 18.
    C. Van den Broeck, E. Kestemont, and M. Malek Mansour, Heat conductivity shared by a piston, Europhys. Lett. 56:771(2001).Google Scholar
  19. 19.
    H. Haken, Advanced Synergetics (Springer, Berlin, 1983).Google Scholar
  20. 20.
    J. D. Murray, Mathematical Biology (Springer, Berlin, 1993).Google Scholar
  21. 21.
    A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).Google Scholar
  22. 22.
    J. L. Lebowitz, private communication.Google Scholar
  23. 23.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 1986), p. 227.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Christian Gruber
    • 1
  • Séverine Pache
    • 1
  • Annick Lesne
    • 2
  1. 1.École Polytechnique Fédérale de LausanneInstitut de Physique ThéoriqueLausanneSwitzerland
  2. 2.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie Curie, Case 121Paris Cedex 05France

Personalised recommendations