Hydrobiologia

, Volume 500, Issue 1–3, pp 83–94

Impact of fish predation on coexisting Daphnia taxa: a partial test of the temporal hybrid superiority hypothesis

  • Steven Declerck
  • Luc De Meester
Article

Abstract

Fish predation was tested as a factor mediating the coexistence of Daphnia taxa in the shallow, hypertrophic Lake Blankaart. Naturally co-occurring populations of D. galeata and the hybrid D. galeata x cucullata were subjected to different levels of fish predation in in situ enclosures. In control enclosures without fish, the largest taxon D. galeata rapidly became dominant over the intermediate sized D. galeata x cucullata, mainly as a result of higher birth rates. In enclosures with fish, population densities of D. galeata dropped relative to D. galeata x cucullata, due to higher mortality rates. These results are in concordance with the `temporal hybrid superiority hypothesis', and can be explained by a higher vulnerability of the large and more conspicuous D. galeata to the size selective predation exerted by visually hunting planktivorous fishes. After approximately one month, however, population growth rates of D. galeata and D. galeata x cucullata in the enclosures with fish converged, due to a relative reduction in the mortality rate of D. galeata. This suggests that, in the presence of fish, D. galeata may co-exist with hybrids due to a decrease in its relative vulnerability to visual predation with time. Indeed, both D. galeata and the hybrid showed strong reductions in adult body size in the enclosures with fish, but this size reduction tended to be stronger in D. galeata than in D. galeata x cucullata. In addition, turbidity increased in the enclosures with fish and may additionally have reduced the relative advantage of D. galeata x cucullata with regard to mortality caused by visual predation.

Daphnia temporal hybrid superiority hypothesis fish predation co-existence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, N. H. & G.M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113–148.Google Scholar
  2. Barton, N. H. & G. M. Hewitt, 1989. Adaptation, speciation and hybrid zones. Nature 341: 497–503.PubMedGoogle Scholar
  3. Bierne, N., P. David, P. Boudry & F. Bonhomme, 2002. Assortative fertilization and selection at larval stage in the mussels Mytilus edulis and M. galloprovincialis. Evolution 56: 292–298.PubMedGoogle Scholar
  4. Boersma, M. & J. Vijverberg, 1994a. Resource depression in Daphnia galeata, Daphnia cucullata and their interspecific hybrid: life history consequences. J. Plankton Res. 16: 1741–1758.Google Scholar
  5. Boersma, M. & J. Vijverberg, 1994b. Seasonal variations in the condition of two Daphnia species and their hybrid in a eutrophic lake: evidence for food limitation. J. Plankton Res. 16: 1793–1809.Google Scholar
  6. Boersma, M. & J. Vijverberg, 1995. The significance of nonviable eggs for Daphnia population dynamics. Limnol. Oceanogr. 40: 1215–1224.Google Scholar
  7. Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia 103: 309–318.Google Scholar
  8. Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. Am. Nat. 152: 237–248.Google Scholar
  9. Botrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian J. Zool. 24: 419–456.Google Scholar
  10. Declerck, S. & A. Weber, 2003. Genetic differentiation in life history between D. galeata populations: an adaptation to local predation regimes? J. Plankton Res. 25: 93–102.Google Scholar
  11. Flössner, D. & K. Kraus, 1986. On the taxonomy of the Daphnia hyalina-galeata complex (Crustacea: Cladocera). Hydrobiologia 137: 97–115.Google Scholar
  12. Gliwicz, Z. M. & G. Umana, 1994. Cladoceran body size and vulnerability to copepod predation. Limnol. Oceanogr. 39: 419–424.Google Scholar
  13. Good, T. P., J. C. Ellis, C. A. Annett & R. Pierotti, 2000. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice. Evolution 54: 1774–1783.PubMedGoogle Scholar
  14. Müller, J. & A. Seitz, 1993. Habitat partitioning and differential vertical migration of some Daphnia genotypes in a lake. Archiv für Hydrobiol. Beih. Ergebnisse der Limnol. 39: 167–174.Google Scholar
  15. Moore, W. S. & W. D. Koenig, 1986. Comparative reproductive success of yellow-shafted, red-shafted, and hybrid flickers across a hybrid zone. The Auk 103: 42–51.Google Scholar
  16. Paloheimo, J. E., 1974. Calculation of instantaneous birth rate. Limnol. Oceanogr. 19: 692–694.Google Scholar
  17. Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465–481.Google Scholar
  18. Schwenk, K., 1997. Evolutionary genetics of Daphnia species complexes – Hybridism in syntopy. PhD-thesis.Google Scholar
  19. Spaak, P. & J. R. Hoekstra, 1995. Life history variation and the coexistence of a Daphnia hybrid with its parental species. Ecology 76: 553–564.Google Scholar
  20. Spaak, P. & J. R. Hoekstra, 1997. Fish predation on a Daphnia hybrid species complex: a factor explaining species coexistence? Limnol. Oceanogr. 42: 753–762.Google Scholar
  21. Spaak, P., J. Vanoverbeke & M. Boersma, 2000. Predator-induced life-history changes and the coexistence of five taxa in a Daphnia species complex. Oikos 89: 164–174.Google Scholar
  22. Taylor, D. J. & P. D. N. Hebert, 1992. Daphnia galeata mendotae as a cryptic species complex with interspecific hybrids. Limnol. Oceanogr. 37: 658–665.Google Scholar
  23. Taylor, D. J. & P. D. N. Hebert, 1993. A reappraisal of phenotypic variation in Daphnia galeata mendotae: the role of interspecific hybridization. Can. J. Fish. aquat. Sci. 50: 2137–2146.Google Scholar
  24. Tollrian, R. & C. D. Harvell (eds), 1999. Ecology and Evolution of Inducible Defences. Princeton University Press, Princeton, New Jersey.Google Scholar
  25. Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the 'top-down' effect of fish on algae in lakes. Ecology 78: 21–40.Google Scholar
  26. Van der Werf, B., J. Schrotenboer, A. F. Richter, J. R. Moed, H. L. Hoogveld & H. De Haan, 1987. A durable and transportable limnetic enclosure system suitable for wind-exposed lakes. Can. J. Fish. aquat. Sci. 44: 1649–1652.Google Scholar
  27. Weider, L. J., 1993. Niche breadth and life history variation in a hybrid Daphnia complex. Ecology 74: 935–943.Google Scholar
  28. Weisse, T., H. Müller, M. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldinger, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large pre-alpine lake. Limnol. Oceanogr. 35: 781–794.Google Scholar
  29. Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridisation underlies phenotypic variability in Daphnia populations. Oecologia 68: 507–511.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Steven Declerck
    • 1
  • Luc De Meester
    • 2
  1. 1.Laboratory of Animal EcologyState University of GentGentBelgium
  2. 2.Laboratory of Aquatic Ecology, KU LeuvenLeuvenBelgium

Personalised recommendations