Space Science Reviews

, Volume 106, Issue 1–4, pp 155–172 | Cite as

Isotopic Signatures of Presolar Materials in Interplanetary Dust

  • S. Messenger
  • F.J. Stadermann
  • C. Floss
  • L.R. Nittler
  • S. Mukhopadhyay


Interplanetary dust particles collected in the stratosphere frequently exhibit enrichments in deuterium (D) and 15N relative to terrestrial materials. These effects are most likely due to the preservation of presolar interstellar materials. While the elevated D/H ratios probably resulted from mass fractionation during chemical reactions at very low < 100 K temperatures, the origin of the N isotopic anomalies remains unresolved. The bulk of the N-bearing material may have obtained its isotopic signatures from low temperature chemistry, but a nucleosynthetic origin is also possible.


Dust Fractionation Mass Fractionation Deuterium Dust Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, N.G., and Smith, D.: 1981, 'N-14/N-15 Isotope Fractionation in the Reaction N2H++N2 — Interstellar Significance', Astrophys. J. 247, L123–L125.CrossRefADSGoogle Scholar
  2. Aikawa, Y., and Herbst, E.: 1999, 'Deuterium Fractionation in Protoplanetary Discs', Astrophys. J. 526, 314–326.CrossRefADSGoogle Scholar
  3. Aikawa, Y., and Herbst, E.: 2001, 'Two-dimensional Distributions and Column Densities of Gaseous Molecules in Protoplanetary Discs II. Deuterated Species and UV Shielding by Ambient Clouds', Astron. Astrophys. 371, 1101–1117.ADSGoogle Scholar
  4. Aléon, J., Engrand, C., Robert, F., and Chaussidon, M.: 2001, 'Clues to the Origin of Interplanetary Dust Particles From the Isotopic Study of Their Hydrogen-bearing Phases', Geochim. Cosmochim. Acta 65, 4399–4412.CrossRefADSGoogle Scholar
  5. Bradley, J.P., Sandford, S.A., and Walker, R.M.: 1988, 'Interplanetary Dust Particles', in J. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, Univ. Arizona Press, Tucson, pp. 861–895.Google Scholar
  6. Charnley, S.B., and Rodgers, S.D.: 2002, 'The End of Interstellar Chemistry as the Origin of Nitrogen in Comets and Meteorites', Astrophys. J. 569, L133–L137.CrossRefADSGoogle Scholar
  7. Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., and Walker, R.M.: 1993, 'Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles', Science 262, 721–725.ADSGoogle Scholar
  8. Clemett, S.J., Messenger, S., Keller, L.P., Thomas-Keprta, K.L., and McKay, D.S.: 2002, 'Spatially Resolved Analysis of Amines in Interplanetary Dust Particles Using Fluorescent Molecular Probes', Met. Planet. Sci. 37, A36.Google Scholar
  9. Cronin, J.R., and Chang, S.: 1993, 'Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite', in J.M. Greenberg et al. (eds.), The Chemistry of Life's Origins, Kluwer, Netherlands, pp. 209–258.Google Scholar
  10. Deloule, E., and Robert, F.: 1995, 'Interstellar Water in Meteorites?', Geochim. Cosmochim. Acta 59, 4695–4706.CrossRefADSGoogle Scholar
  11. Floss, C., and Stadermann, F.J.: 2002, 'NanoSIMS Measurements of Nitrogen Isotopic Distributions in IDPs and Renazzo: Uniform 15N Enrichment in a Chondritic IDP', LPSC 33, Abstract # 1350.Google Scholar
  12. Geiss, J., and Reeves, H.: 1981, 'Deuterium in the Solar System', Astron. Astrophys. 93, 189–199.ADSGoogle Scholar
  13. Geiss, J., and Bochsler, P.: 1982, 'Nitrogen Isotopes in the Solar System', Geochim. Cosmochim. Acta 46, 529–548.CrossRefADSGoogle Scholar
  14. Hashizume, K., Chaussidon, M., Marty, B., and Robert, F.: 2000, 'Solar Wind Record on the Moon: Deciphering Presolar from Planetary Nitrogen', Science 290, 1142–1145.CrossRefADSGoogle Scholar
  15. Keller, L.P., and Messenger, S.: 1997, 'Nitrogen Speciation in a 15N-rich Interplanetary Dust Particle', Lunar Planet. Sci. 28, 707–708.ADSGoogle Scholar
  16. Keller, L.P., Messenger, S., Flynn, G.J., and Clemett, S.J.: 2002, 'The Nature of Molecular Cloud Material in Interplanetary Dust', Geochim. Cosmochim. Acta, in preparation.Google Scholar
  17. McKeegan, K.D.: 1987, 'Ion Microprobe Measurements of H, C, O, Mg, and Si Isotopic Abundances in Individual Interplanetary Dust Particles', Ph.D. Thesis, Washington Univ.Google Scholar
  18. McKeegan, K.D., Walker, R.M., and Zinner, E.: 1985, 'Ion Microprobe Measurements of Individual Interplanetary Dust Particles', Geochim. Cosmochim. Acta 49, 1971–1987.CrossRefADSGoogle Scholar
  19. McKeegan, K.D., Swan, P.D., Walker, R.M., Wopenka, B., and Zinner, E.: 1987, 'Hydrogen Isotopic Variations in Interplanetary Dust Particles', Lunar Planet. Sci. 18, 627–628.ADSGoogle Scholar
  20. Messenger, S.: 2000, 'Identification of Molecular Cloud Material in Interplanetary Dust', Nature 404, 968–971.CrossRefADSGoogle Scholar
  21. Messenger, S.: 2002, 'Opportunites for the Stratospheric Collection of Dust From Short-period Comets', Met. Planet. Sci. 37, in press.Google Scholar
  22. Messenger, S., Keller, L.P., and Walker R.M.: 2002, 'Discovery of Abundant Interstellar Silicates in Cluster IDPs', Lunar Planet. Sci. 33, Abstract # 1887.Google Scholar
  23. Messenger, S., and Walker R.M.: 1997, 'Evidence for Molecular Cloud Material in Meteorites and Interplanetary Dust', Astrophysical Implications of the Laboratory Study of Presolar Materials, AIP Conf. Proc. 402, pp. 545–564.ADSGoogle Scholar
  24. Millar, T.J., Bennett, A., and Herbst, E.: 1989, 'Deuterium Fractionation in Dense Interstellar Clouds', Astrophys. J. 340, 906–920.CrossRefADSGoogle Scholar
  25. Nittler, L.R., and Messenger, S.: 1998, 'Hydrogen and Nitrogen Isotopic Imaging of Interplanetary Dust', Lunar Planet. Sci. 29, Abstract # 1380.Google Scholar
  26. Owen, T., Mahaffy, P.R., Niemann, H. B., Atreya, S., and Wong, M.: 2001, 'Protosolar Nitrogen', Astrophys. J. 553, L77–L79.CrossRefADSGoogle Scholar
  27. Sandford, S.A.: 1987, 'The Collection and Analysis of Extraterrestrial Dust Particles', Fund. Cosmic Phys. 12, 1–73.ADSGoogle Scholar
  28. Sandford, S.A.: 2001, 'Assessment of the Interstellar Processes Leading to Deuterium Enrichments in Meteoritic Organics', Met. Planet. Sci. 36, 1117–1133.ADSCrossRefGoogle Scholar
  29. Stadermann, F.J.: 1991, 'Messung von Isotopen-und Elementhäufigkeiten in einzelnen interplanetaren Staubteilchen mittels Sekundärionen-Massenspektrometrie', PhD Thesis, Universität Heidelberg.Google Scholar
  30. Stadermann, F.J.: 2001, 'Hydrogen, Carbon and Nitrogen Isotopic Imaging of Sub-micron Components From Interplanetary Dust Particels', LPSC 32, Abstract # 1792.Google Scholar
  31. Stadermann, F.J., Walker, R.M., and Zinner, E.: 1989, 'Ion Microprobe Measurements of Nitrogen Isotopic Variations in Individual IDPs', Met. Soc. meeting 52; LPI Contributions 712, 228.ADSGoogle Scholar
  32. Terzieva, R., and Herbst, E.: 2000, 'The Possibility of Nitrogen Isotopic Fractionation in the Interstellar Medium', Month. Not. R. Astron. Soc. 317, 563–568.CrossRefADSGoogle Scholar
  33. Tielens, X.: 1997, 'Deuterium in Interstellar Chemical Processes', Astrophysical Implications of the Laboratory Study of Presolar Materials, AIP Conf. Proc. 402, pp. 523–544.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Messenger
    • 1
  • F.J. Stadermann
    • 1
  • C. Floss
    • 1
  • L.R. Nittler
    • 2
  • S. Mukhopadhyay
    • 2
  1. 1.Laboratory for Space Sciences, Department of PhysicsWashington UniversitySaint LouisUSA
  2. 2.Department of Terrestrial MagnetismCarnegie Institute of WashingtonWashington D.C.

Personalised recommendations