Journal of Statistical Physics

, Volume 112, Issue 5–6, pp 1153–1175 | Cite as

Non-Equilibrium Steady States of the XY Chain

  • Walter H. Aschbacher
  • Claude-Alain Pillet


We study the non-equilibrium statistical mechanics of the two-sided XY chain. We start from an initial state in which the left and right part of the lattice,
$$\mathbb{Z}_{\text{L}} = \{ x \in \mathbb{Z}|x < - M\} ,{\text{ }}\mathbb{Z}_{\text{R}} = \{ x \in \mathbb{Z}|x >M\} ,$$
are at inverse temperatures βL and βR. Using a simple scattering theoretic analysis, we construct the unique non-equilibrium steady state (NESS). This state depends on βL and βR, but not on the choice of the decoupling parameter M. We prove that in the non-equilibrium case, βLβR, this state has strictly positive entropy production.
XY chain Jordan–Wigner transformation non-equilibrium steady state Bogoliubov automorphism scattering theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Araki, On the XY-model on two-sided infinite chain, Publ. RIMS Kyoto Univ. 20:277–296 (1984).Google Scholar
  2. 2.
    H. Araki, Master symmetries of the XY model, Comm. Math. Phys. 132:155–176 (1990).Google Scholar
  3. 3.
    H. Araki, On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6:385–442 (1971).Google Scholar
  4. 4.
    A. Y. Alekseev, V. V. Cheianov, and J. Fröhlich, Universality of transport properties in equilibrium, the goldstone theorem and chiral anomaly, Phys. Rev. Lett. 81:3503–3506 (1998).Google Scholar
  5. 5.
    H. Araki and E. Barouch, On the dynamics and ergodic properties of the XY model, J. Stat. Phys. 3ö1:327–345 (1983).Google Scholar
  6. 6.
    H. Araki and T. G. Ho, Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain, Proc. Steklov Inst. Math. 228:191–204 (2000).Google Scholar
  7. 7.
    E. Barouch and B. Fuchssteiner, Master symmetries and similarity equation, Stud. Appl. Math. 73:221–237 (1985).Google Scholar
  8. 8.
    E. Barouch and B. M. McCoy, Statistical mechanics of the XY model II. Spin-correlation functions, Phys. Rev. A 3:786–804 (1971).Google Scholar
  9. 9.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 (Springer, New York, 1987).Google Scholar
  10. 10.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 (Springer, New York, 1997).Google Scholar
  11. 11.
    H. Castella, X. Zotos, and P. Prelovšek, Integrability and ideal conductance at finite temperatures, Phys. Rev. Lett. 74:972–975 (1995).Google Scholar
  12. 12.
    E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63:277–301 (1978).Google Scholar
  13. 13.
    S. Dirren and J. Fröhlich, Unpublished.Google Scholar
  14. 14.
    L. Hume and D. W. Robinson, Return to equilibrium in the XY model, J. Stat. Phys. 44:829–848 (1986).Google Scholar
  15. 15.
    V. Jakšińc and C.-A. Pillet, On entropy production in quantum statistical mechanics, Comm. Math. Phys. 217:285–293 (2001).Google Scholar
  16. 16.
    V. Jakšińc and C.-A. Pillet, Mathematical theory of non-equilibrium quantum statistical mechanics, J. Stat. Phys. 108:787(2002).Google Scholar
  17. 17.
    V. Jakšińc and C.-A. Pillet, A note on the entropy production formula. To appear in Contemp. Math. Google Scholar
  18. 18.
    P. Jordan and E. Wigner, Pauli's equivalence prohibition, Z. Phys. 47:631(1928).Google Scholar
  19. 19.
    E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Physics 16:407–466 (1961).Google Scholar
  20. 20.
    T. Matsui, On conservation laws of the XY model, Math. Phys. Stud. 16:197–204 (1993).Google Scholar
  21. 21.
    B. M. McCoy, Spin correlation functions of the XY model, Phys. Rev 173:531–541 (1968).Google Scholar
  22. 22.
    Y. Nambu, A note on the eigenvalue problem in crystal statistics, Progr. Theor. Phys. Japan 5:1–13 (1950).Google Scholar
  23. 23.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory (Academic Press, New York, 1979).Google Scholar
  24. 24.
    D. Ruelle, Entropy production in quantum spin systems, Comm. Math. Phys. 224:3–16 (2001).Google Scholar
  25. 25.
    D. Ruelle, Natural nonequilibrium states in quantum statistical mechanics, J. Stat. Phys. 98:57–75 (2000).Google Scholar
  26. 26.
    K. Saito, S. Takesue, and S. Miyashita, Thermal conduction in a quantum system, Phys. Rev. E 54:2404–2408 (1996).Google Scholar
  27. 27.
    S. Sakai, C *-Algebras and W *-Algebras (Springer, New York, 1971).Google Scholar
  28. 28.
    A. V. Sologubenko, K. Giannò, H. R. Ott, A. Vietkine, and A. Revcolevschi, Heat transport by lattice and spin excitations in the spin-chain compounds SrCuO2 and Sr2CuO3, Phys. Rev. B 64 (2001), 054412–1–054412–11.Google Scholar
  29. 29.
    A. V. Sologubenko, E. Felder, K. Giannò, H. R. Ott, A. Vietkine, and A. Revcolevschi, Thermal conductivity and specific heat of the linear chain cuprate Sr2CuO3: Evidence for the thermal transport via spinons, Phys. Rev. B 62:R6108-R6111 (2000).Google Scholar
  30. 30.
    X. Zotos, Finite temperature Drude weight of the one-dimensional spin-1/2 Heisenberg model, Phys. Rev. Lett. 82:1764–1767 (1999).Google Scholar
  31. 31.
    X. Zotos, F. Naef, and P. Prelovšek, Transport and conservation laws, Phys. Rev. B 55:11029–11032 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Walter H. Aschbacher
    • 1
    • 2
  • Claude-Alain Pillet
    • 1
    • 2
  1. 1.PHYMATUniversité de ToulonLa Garde CedexFrance
  2. 2.FRUMAM, CPT-CNRS Luminy, Case 907Marseille Cedex 9France

Personalised recommendations