Journal of Computer-Aided Molecular Design

, Volume 17, Issue 1, pp 1–11 | Cite as

Enantioselectivity of epoxide hydrolase catalysed oxirane ring opening: a 3D QSAR Study

  • Joachim Paier
  • Thomas Stockner
  • Andreas Steinreiber
  • Kurt Faber
  • Walter M.F. Fabian


A 3D QSAR analysis (quantitative structure activity relationships) of a set of 2,2-disubstituted epoxides, substrates for epoxide hydrolases originating from four different organisms, was conducted by CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis), with respect to the enantioselective ring opening to the corresponding vicinal diol. Structural variations of the substrates include alkyl chains of different lengths, unsaturated moieties ((E)- and (Z)-alkenyl, alkinyl, aryl) and electronegative groups (ether oxygens, halogen atoms) at different locations within the 2-substituent group. Generally, all four organisms, namely Rhodococcus ruber NCIMB 11216, Rhodococcus ruber DSM 43338, Rhodococcus ruber DSM 44540 and Rhodococcus ruber DSM 44539, preferentially react with the (S)-enantiomer of the epoxide. Enantioselectivities (enantiomeric ratio, ln E values) show a rather large variation, ranging from almost no (ln E<1) to nearly complete selectivity (ln E>5.3). In addition, the response of the epoxide hydrolases stemming from the four organisms towards structural modifications of the substrate is different. Models for the enantioselectivity (enantiomeric ratio, ln E values) obtained by CoMFA and CoMSIA are of different but reasonable predictive power, e.g., q2CV=0.701 and r2=0.937 for the CoMFA model of Rhodococcus ruber DSM 43338. Enantiomeric ratios for the test molecules can be well predicted. Plots of steric and electrostatic CoMFA (CoMSIA) fields allow conclusions to be drawn for the choice of the most suitable organism for a specific type of substrate.

Comparative Molecular Field Analysis (CoMFA) Comparative Molecular Similarity Indices Analysis (CoMSIA) epoxide hydrolase Rhodococcus ruber substrate model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas, H., Oesch, F., ISI Atlas Sci.: Biochem., (1988) 287.Google Scholar
  2. 2.
    (a) For the asymmetric chemo-hydrolysis: Ready, J. M., Jacobsen, E. N., Angew. Chem., Int. Ed. Engl., 41 (2002) 1347. Schaus, S. E., Brandes, B. D., Larrow, J. F., Tokunaga, M., Hansen, K. B., Gould, A. E., Furrow, M. E., Jacobsen, E. N., J. Am. Chem. Soc., 124 (2002) 1307. (b) for the biohydrolysis see: Faber, K., Orru, R. V. A., in: Enzyme Catalysis in Organic Synthesis, K. Drauz, H. Waldmann (Eds.), Wiley-VCH, Weinheim, 2nd edn., vol. II, 2002, pp. 579-608.Google Scholar
  3. 3.
    Oesch, F., Xenobiotica, 3 (1972) 305.Google Scholar
  4. 4.
    Archelas, A., J. Mol. Catal. B., 5 (1998) 79.Google Scholar
  5. 5.
    Weijers, C. A. G. M., Bont, de, J. A.M., J. Mol. Catal. B., 6 (1999) 199.Google Scholar
  6. 6.
    Steinreiber, A., Faber, K., Curr. Opinion Biotechnol., 12 (2001) 552.Google Scholar
  7. 7.
    Wandel, U., Mischitz, M., Kroutil, W., Faber, K., J. Chem. Soc., Perkin Trans. 1, (1995) 735.Google Scholar
  8. 8.
    Mischitz, M., Kroutil, W., Wandel, U., Faber, K., Tetrahedron: Asymmetry, 6 (1995) 1261.Google Scholar
  9. 9.
    Kroutil, W., Osprian, I., Mischitz, M., Faber, K., Synthesis, (1997) 156.Google Scholar
  10. 10.
    Osprian, I., Kroutil, W., Mischitz, M., Faber, K., Tetrahedron: Asymmetry, 8 (1997) 65.Google Scholar
  11. 11.
    Orru, R. V. A., Mayer, S. F., Kroutil, W., Faber, K., Tetrahedron, 54 (1998) 859.Google Scholar
  12. 12.
    W. Krenn, I. Osprian, W. Kroutil, G. Braunegg, K. Faber, Biotechnol. Lett., 21 (1999) 687.Google Scholar
  13. 13.
    Steinreiber, A., Osprian, I., Mayer, S. F., Orru, R. V.A., Faber, K., Eur. J. Org. Chem., (2000) 3703.Google Scholar
  14. 14.
    Steinreiber, A., Hellström, H., Mayer, S. F., Orru, R. V. A., Faber, K., Synlett, (2001) 111.Google Scholar
  15. 15.
    Hellström, H., Steinreiber, A., Mayer, S. F., Faber, K., Biotechnol. Lett., 23 (2001) 169.Google Scholar
  16. 16.
    Osprian, I., Stampfer, W., Faber, K., J. Chem. Soc., Perkin Trans. 1, (2000) 3779.Google Scholar
  17. 17.
    Hult, K., Faber, K.; Horvath, I. T. (Ed.), Encyclopedia of Catalysis, Wiley, New York, 2002, in press.Google Scholar
  18. 18.
    Cramer III, R. D., Patterson, D. E., Bunce, J. D., J. Am. Chem. Soc., 110 (1988) 5959.Google Scholar
  19. 19.
    Klebe, G., Abraham, U., Mietzner, T., J. Med. Chem., 37 (1994) 4130.Google Scholar
  20. 20.
    Kubinyi, H., Folkers, G., Martin, Y. C., (Eds.), 3D QSAR in Drug Design, Vols. 2 and 3, Kluwer, Dordrecht, 1998.Google Scholar
  21. 21.
    SYBYL, Molecular Modeling Software, Tripos Inc., 1699 S. Hanley Road, St. Louis, MO 63944, USA.Google Scholar
  22. 22.
    Clark, M., Cramer III, R. D., Opdenbosch, van, N., J. Comp. Chem., 10 (1989) 982.Google Scholar
  23. 23.
    Stewart, J. J. P., J. Comput.-Aided Mol. Design, 4 (1990) 1.Google Scholar
  24. 24.
    Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P., J. Am. Chem. Soc., 107 (1985) 3902.Google Scholar
  25. 25.
    Baker, J., J. Comp. Chem., 7 (1986) 385.Google Scholar
  26. 26.
    Cramer III, R. D., DePriest, S. A., Patterson, D. E., Hecht, P., in Kubinyi, H. (Ed), 3D QSAR in Drug Design. Theory Methods and Applications, ESCOM, Leiden, 1993, 443.Google Scholar
  27. 27.
    Clark, M., Cramer III, R. D., Jones, D. M., Patterson, D. E., Simeroth, P. E., Tetrahedron Comput. Methodol., 3 (1990) 47.Google Scholar
  28. 28.
    Faber, K., Griengl H., Hönig, H., Zuegg, J., Biocatalysis, 9 (1994) 227.Google Scholar
  29. 29.
    Lindberg, W., Persson, J.-A., Wold, S., Anal. Chem., 55 (1983) 643.Google Scholar
  30. 30.
    Wold, S., Sjöström, M., Eriksson, L., Chemom. Int. Lab. Syst., 58 (2001) 109.Google Scholar
  31. 31.
    Cramer III, R. D., Bunce, J. D., Patterson, D. E., Frank, I. E., Quant. Struct.-Act. Relat. Pharmacol., 7 (1988) 18.Google Scholar
  32. 32.
    Bush, B. L., Nachbar, R. B., Jr., J. Comput.-Aided Mol. Design, 7 (1993) 587.Google Scholar
  33. 33.
    Kubinyi, H., Schleyer, P. v. R. (Eds.), Encyclopedia of Computational Chemistry, Wiley, Chichester, New York, 1998, 448.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Joachim Paier
    • 1
  • Thomas Stockner
    • 1
  • Andreas Steinreiber
    • 1
  • Kurt Faber
    • 1
  • Walter M.F. Fabian
    • 1
  1. 1.Institut für Chemie (IfC)Karl-Franzens Universität GrazGrazAustria

Personalised recommendations