Breast Cancer Research and Treatment

, Volume 80, Issue 2, pp 221–232 | Cite as

Inhibition of Invasion and Metastasis by Glypican-3 in a Syngeneic Breast Cancer Model

  • M.G. Peters
  • E. Farías
  • L. Colombo
  • J. Filmus
  • L. Puricelli
  • E. Bal de Kier Joffé
Article

Abstract

Glypican-3 (GPC3), a proteoglycan bound to the cell membrane through a GPI anchor, is widely expressed in the embryo but down regulated in most adult tissues, with some exceptions as mammary cells. GPC3 is involved in the regulation of cell proliferation and survival in specific cell types. LM3, a murine mammary tumor cell line unable to express GPC3, was stably transfected with the rat GPC3 gene to analyze its role in tumor progression. Upon injection into syngeneic BALB/c mice LM3-GPC3 clones showed less local invasiveness and developed fewer spontaneous and experimental lung metastasis than controls. GPC3-expressing cells were more sensitive to apoptosis induced by serum depletion, exhibited a delay in the first steps of spreading and were less motile than controls. On the other hand, LM3-GPC3 cells were significantly more adherent to FN than control ones. We observed that GPC3 transfectants presented a higher expression of E-cadherin and β-catenin, molecules whose down regulation has been associated with tumor progression. Exogenous TGF-β increased MMP-9 activity in both control and GPC3-expressing cells, but did not modulate MMP-2. Contrarily, GPC3 expression prevented the increase of MMP-2 activity induced by IGF-II. Our results suggest that GPC3 has a protective role against mammary cancer progression.

breast cancer glypican-3 invasion metastasis tumor progression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M: Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729-777, 1999Google Scholar
  2. 2.
    Filmus J, Song HH: Glypicans. In: Iozzo RV (ed) Proteoglycans. Marcel Dekker, New York, 2000, pp 161-176Google Scholar
  3. 3.
    Filmus J: Glypicans in growth control and cancer. Glycobiology 11: 19R-23R, 2001Google Scholar
  4. 4.
    Nakato H, Futch TA, Selleck SB: The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121: 3687-3702, 1995Google Scholar
  5. 5.
    Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N: Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution ofWingless. Development 126: 87-94, 2001Google Scholar
  6. 6.
    Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco, Schlessinger D: Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 12: 241-247, 1996Google Scholar
  7. 7.
    Neri G, Gurrieri F, Zanni G, Lin A: Clinical and molecular aspects of the Simpson-Golabi-Behmel syndrome. Am J Med Genet 79: 279-283, 1998Google Scholar
  8. 8.
    Cano-Gauci DF, Song H, Yang H, McKerlie C, Choo B, Shi W, Pullano R, Piscione TD, Grisaru S, Soon S, Sedlackova L, Tanswell AK, Mak TW, Yeger H, Lockwood GA, Rosenblum N, Filmus J: Glypican-3-deficient mice exhibit the overgrowth and renal abnormalities typical of the Simpson-Golabi-Behmel syndrome. J Cell Biol 146: 255-264, 1999Google Scholar
  9. 9.
    Paine-Saunders S, Viviano BL, Zupicich J, Skarnes WC, Saunders S: Glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol 225: 179-187, 2000Google Scholar
  10. 10.
    Duenas Gonzalez A, Kaya M, Shi W, Song H, Testa JR, Penn LZ, Filmus J: OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol 141: 1407-1414, 1997Google Scholar
  11. 11.
    Lin H, Huber R, Schlessinger D, Morin PJ: Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res 59: 807-810, 1999Google Scholar
  12. 12.
    Murphy SS, Shen T, De Rienzo A, Lee WC, Ferriola PC, Jhanwar SC, Mossman BT, Filmus J, Testa JR: Expression of GPC3, an X-linked recessive over-growth gene, is silenced in malignant mesothelioma. Oncogene 19: 410-416, 2000Google Scholar
  13. 13.
    Xiang YY, Ladeda V, Filmus J: Glypican-3 expression is silenced in human breast cancer. Oncogene 50: 7408-7412, 2001Google Scholar
  14. 14.
    Hanahan D, Weinberg R: The hallmarks of cancer. Cell 100: 57-70, 2000Google Scholar
  15. 15.
    Fidler IJ: Critical factors in the biology of human cancer metastasis. Twenty eight G.H.A. Clowes memorial award lecture. Cancer Res 50: 6130-6138, 1990Google Scholar
  16. 16.
    Brodt P: Cell Adhesion and Invasion in Cancer Metastasis. Landes, Austin and Spronger, Berlin, 1996, pp 167-242Google Scholar
  17. 17.
    Shekhar PV, Aslakson CJ, Miller FR: Molecular events in metastatic progression. Semin Cancer Biol 4: 193-204, 1993Google Scholar
  18. 18.
    Urtreger A, Ladeda V, Puricelli L, Rivelli A, Vidal MC, Lustig ES, Bal de Kier Joffé E: Modulation of fibronectin expression and proteolytic activity associated with the invasive and metastatic phenotype in two murine mammary cell lines. Int J Oncol 11: 489-496, 1997Google Scholar
  19. 19.
    Bal de Kier Joffé E, Puricelli L, Vidal MC, Lustig ES: Characterization of two murine mammary adenocarcinoma tumors with different metastatic ability. J Exp Clin Canc Res 2: 151-160, 1983Google Scholar
  20. 20.
    Filmus J, Shi W, Wong ZM, Wong MJ: Identification of a new membrane-bound heparan sulfate proteoglycan. Biochem J 311: 561-565, 1995Google Scholar
  21. 21.
    Mizushima S, Nagata S: pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18: 5322, 1990Google Scholar
  22. 22.
    Filmus J, Church JG, Buick RN: Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol 8: 4243-4249, 1988Google Scholar
  23. 23.
    Chandler LA, Bourylois S: Posttranscriptional down regulation of fibronectin in n-ras-transformed cells. Cell Growth Differ 2: 379-384, 1991Google Scholar
  24. 24.
    Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254, 1976Google Scholar
  25. 25.
    Heffelfinger SC, Haukins H, Barrish J, Taylor L, Darlington G: SK HEP-1: a human cell line of endothelial origin. In Vitro Cell Dev B 28A: 136-142, 1992Google Scholar
  26. 26.
    Aguirre Ghiso JA, Alonso DA, Faríxas EF, Arregui C, Bal de Kier Joffé ED: A phospholipase D and protein kinase C inhibitor blocks the spreading of murine mammary adenocarcinoma cells altering f-actin and B1-integrin point contact distribution. Int J Cancer 72: 881-891, 1997Google Scholar
  27. 27.
    Pereyra-Alfonso S, Haedo A, Bal de Kier Joffé ED: Correlation between urokinase-type plasminogen activator production and the metastasizing ability of two murine mammary adenocarcinomas. Int J Cancer 42: 59-63, 1988Google Scholar
  28. 28.
    Alonso DF, Farías EF, Bal de Kier Joffé ED: Impairment of fibrinolisis during the growth of two murine mammary adenocarcinomas. Cancer Lett 70: 181-187, 1993Google Scholar
  29. 29.
    Pittman R: Release of plasminogen activator and calcium dependent metalloprotease from cultured sympathic and sensor neurons. Dev Biol 110: 91-101, 1985Google Scholar
  30. 30.
    Laemmli U: Cleavage of structural proteins during assembly of the head of bactheriophage T4. Nature 227: 680-685, 1970Google Scholar
  31. 31.
    Bonneh-Barkay D, Shlissel M, Berman B, Shaoul E, Admont A, Vlodavsky I, Carey D, Asundi V, Reich-Slotky R, Ron D: Identification of glypican as dual modulator of the biological activity of fibroblast growth factors. J Biol Chem 272: 12415-12421, 1997Google Scholar
  32. 32.
    Powel CA, Xu G, Filmus J, Busch S, Brody JS, Rothman PB: Oligonucleotide microarray analysis of lung adenocarcinoma in smokers and nonsmokers identifies GPC3 as a potential lung tumor suppressor. Chest 121: 6S-7S, 2002Google Scholar
  33. 33.
    Hsu HC, Cheng W, Lai PL: Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 57: 5179-5184, 1997Google Scholar
  34. 34.
    Toretsky JA, Zitomersky NL, Eskenazi AE, Voigt RW, Strauch ED, Sun CC, Huber R, Meltzer SJ, Schlessinger D: Glypican-3 expression in Wilms tumor and hepatoblastoma. J Pediatr Oncol 23: 496-499, 2001Google Scholar
  35. 35.
    Saikali Z, Sinnet D: Expression of glypican-3 (GPC3) in embryonal tumors. Int J Cancer 89: 418-422, 2000Google Scholar
  36. 36.
    Price JT, Bonovich MT, Kohn EC: The biochemistry of cancer dissemination. Crit Rev Biochem Mol 32: 175-253, 1997Google Scholar
  37. 37.
    Aplin A, Howe A, Juliano RL: Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol 11: 737-744, 1999Google Scholar
  38. 38.
    Declerck YA, Imren S, Montgomery AM, Mueller BM, Reisfeld RA, Laug WE: Protease and protease inhibitors in tumor progression. Adv Exp Med Biol 425: 89-97, 1997Google Scholar
  39. 39.
    Azzam H, Arand G, Lippman M, Thompson E: Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer I 85: 1758-1764, 1993Google Scholar
  40. 40.
    Deryugina E, Luo G, Reisfeld R, Burdon M, Strongin A: Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 17: 3201-3210, 1997Google Scholar
  41. 41.
    Bemis L, Schedin P: Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res 60: 3414-3418, 2000Google Scholar
  42. 42.
    Egedblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-174, 2002Google Scholar
  43. 43.
    Park B-K, Zeng X, Glazer R: Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61: 7647-7653, 2001Google Scholar
  44. 44.
    Kulig G, Weber M: Akt-dependent and-independent survival signaling pathway utilized by insulin-like growth factor I. Mol Cell Biol 18: 6711-6718, 1998Google Scholar
  45. 45.
    Chiao E, Fisher P, Crisponi L, Deiana M, Dragatsis I, Svhlessinger D, Pilia G, Efstratiadis A: Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol 243: 185-206, 2002Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M.G. Peters
    • 1
  • E. Farías
    • 1
  • L. Colombo
    • 1
  • J. Filmus
    • 2
  • L. Puricelli
    • 1
  • E. Bal de Kier Joffé
    • 1
  1. 1.Research Area, Cell Biology Department, Institute of Oncology “Angel H. Roffo”University of Buenos AiresBuenos AiresArgentina
  2. 2.Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Science Center, Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations