Advertisement

Solid-phase extraction using Empore™ Radium Rad Disks to separate radium from thorium

  • S. Purkl
  • A. Eisenhauer
Article

Abstract

A new method is presented for rapid and selective enrichment of radium in natural samples using 225Ra as a chemical yield tracer. The new technique allows a complete separation of the target nuclide from the sample matrix with high separation factors for thorium and uranium. The use of EmporeÔ Radium Rad Disks combines the easy handling of column chromatography with the high selectivity and rapid extraction kinetics of solvent extraction chromatography. Following this new chemical approach, eluates are obtained which are well suited for a-spectrometric analysis of Ra, Th and U.

Keywords

Thorium Crown Ether Chemical Yield Tracer Activity Radiation Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Jiang, R. B. Holtzman, Health Phys., 57 (1989) 167.Google Scholar
  2. 2.
    G. J. Hancock, P. Martin, Intern. J. Appl. Radiation Isotopes, 42 (1991) 63.CrossRefGoogle Scholar
  3. 3.
    H. Surbeck, Intern. J. Appl. Radiation Isotopes, 53 (2000) 97.CrossRefGoogle Scholar
  4. 4.
    D. F. Reid, R. M. Key, D. R. Schink, Earth Planet. Sci. Lett., 43 (1979) 223.CrossRefGoogle Scholar
  5. 5.
    V. F. Hodge, G. A. Laing, Radiochim. Acta, 64 (1994) 211.CrossRefGoogle Scholar
  6. 6.
    R. Chiarizia, M. L. Dietz, E. P. Horwitz, W. C. Burnett, P. H. Cable, Separ. Sci. Technol., 34 (1999) 931.Google Scholar
  7. 7.
    G. L. Goken, R. L. Bruening, K. E. Krakowiak, R. M. Izatt, in: Metal-Ion Separation and Preconcentration: Progress and Opportunities, A. H. Bond, M. L. Dietz, R. D. Rogers (Eds), ACS Symp. Ser., 716, Washington, D.C., 1999, p. 251.Google Scholar
  8. 8.
    R. M. Izatt, J. S. Bradshaw, R. L. Bruening, Pure Appl. Chem., 68 (1996) 1237.CrossRefGoogle Scholar
  9. 9.
    D. C. Seely, J. A. Osterheim, J. Radioanal. Nucl. Chem., 236 (1998) 175.CrossRefGoogle Scholar
  10. 10.
    A. Durecova, J. Radioanal. Nucl. Chem., 223 (1997) 225.CrossRefGoogle Scholar
  11. 11.
    L. L. Smith, J. S. Alvarado, F. J. Markun, K. M. Hoffmann, D. C. Seely, R. T. Shannon, Radioact. Radiochem., 8 (1997) 30.Google Scholar
  12. 12.
    L. Salonen, T. Ilus, LSC 2001, Intern. Conf. on Advances in Liquid Scintillation Spectrometry, Karlsruhe, 2001.Google Scholar
  13. 13.
    R. Weber, R. A. Esterlund, P. Patzelt, Intern. J. Appl. Radiation Isotopes, 50 (1999) 929.CrossRefGoogle Scholar
  14. 14.
    F. V. Tome, A. M. Sanchez, Intern. J. Appl. Radiation Isotopes, 42 (1991) 135.CrossRefGoogle Scholar
  15. 15.
    L. Hallstadius, Nucl. Instr. Meth. Phys. Res., 223 (1984) 266.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • S. Purkl
    • 1
  • A. Eisenhauer
    • 1
  1. 1.Geomar, Research Center for Marine GeosciencesKielGermany

Personalised recommendations