General Relativity and Gravitation

, Volume 35, Issue 8, pp 1365–1384 | Cite as

Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

  • J. Ponce de Leon
Article

Abstract

In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the “splitting” of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure “constant” and the Thomson cross section are also discussed.

Kaluza-Klein theory Brane theory general relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arkani-Hamed, N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B 429, 263; hep-ph/9803315.Google Scholar
  2. [2]
    Arkani-Hamed, N., Dimipoulos, S., and Dvali, G. (1999). Phys. Rev. D 59, 086004; hep-ph/9807344.Google Scholar
  3. [3]
    Antoniadis, I., Arkani-Hamed, N., Dimipoulos, S., and Dvali, G. (1998). Phys. Lett. B 436, 257; hep-ph/9804398.Google Scholar
  4. [4]
    Randall, L., and Sundrum, R. (1998). Mod. Phys. Lett. A 13, 2807; hep-ph/9905221.Google Scholar
  5. [5]
    Randall, L., and Sundrum, R. (1999). Phys. Rev. Lett. 83, 4690; hp-th/9906064.Google Scholar
  6. [6]
    Wesson, P. S. (1984). Gen. Rel. Grav. 16, 193.Google Scholar
  7. [7]
    Wesson, P. S. (1999). Space-Time-Matter, World Scientific Publishing Co. Pte. Ltd., Singapore.Google Scholar
  8. [8]
    Ponce de Leon, J. (1988). Gen. Rel. Grav. 20, 539.Google Scholar
  9. [9]
    Ponce de Leon, J., and Wesson, P. S. (1993). J. Math. Phys. 34, 4080.Google Scholar
  10. [10]
    Shiromizu, T., Maeda, K., and Sasaki, M. (2000). Phys. Rev. D 62, 02412; gr-qc/9910076.Google Scholar
  11. [11]
    Maartens, R. (2000). Phys. Rev. D 62, 084023; hep-th/0004166.Google Scholar
  12. [12]
    Chamblin, A. (2001). Class. Quant. Grav. 18, L17; hep-th/0011128.Google Scholar
  13. [13]
    Bruni, M., Germani, C., and Maartens, R. (2001). Phys. Rev. Lett. 87, 23130; gr-qc/0108013.Google Scholar
  14. [14]
    Maartens, R. gr-qc/0101059. (2001).Google Scholar
  15. [15]
    Germani, C., and Maartens, R. (2001). Phys. Rev. D 64, 124010; hep-th/0107011.Google Scholar
  16. [16]
    Dadhich, N., and Gosh, S. G. (2001). Phys. Lett. B 518, 1; hep-th/0101019.Google Scholar
  17. [17]
    Govender, M., and Dadhich, N. (2002). Phys. Lett. B 538, 233; hep-th/0109086.Google Scholar
  18. [18]
    Deruelle, N., and Katz, J. (2002). Phys. Rev. D 64, 083515; gr-qc/0104007.Google Scholar
  19. [19]
    Mashhoon, B., Wesson, P. S., and Liu, H. (1998). Gen. Rel. Grav. 30, 555.Google Scholar
  20. [20]
    Wesson, P. S., Mashhoon, B., Liu, H., and Sajko, W. N. (1999). Phys. Lett. B 456, 34.Google Scholar
  21. [21]
    Youm, D. (2000). Phys. Rev. D 62, 084002; hep-th/0004144.Google Scholar
  22. [22]
    Youm, D. (2001). Mod. Phys. Lett. 16, 2371; hep-th/0110013.Google Scholar
  23. [23]
    Ponce de Leon, J. (2002). Gravi Cosmo. 8, 272.Google Scholar
  24. [24]
    Ponce de Leon, J. (2001). Phys. Lett. B 523, 311; gr-qc/0110063.Google Scholar
  25. [25]
    Seahra, S. S. (2002). Phys. Rev. D 65, 124004; gr-qc/0204032.Google Scholar
  26. [26]
    Webb, J. K., Flambaum, V. V., Churchill, C. W., Drinkwater, M. J., and Barrow, J. D. (1999) Phys. Rev. Lett. 82, 884; astro-ph/9803165.Google Scholar
  27. [27]
    Murphy, M. T., Webb, J. K., Flambaum, V. V., Dzuba, V. A., Churchill, C. W., Prochaska, J. X., Barrow, J. D., and Wolfe, A. M. (2001). B. Mon. Not. R. Astron. C. Soc. 327, 1208; astro-ph/0012419.Google Scholar
  28. [28]
    Webb, J. K., Murphy, M. T., Flambaum, V. V., Dzuba, V. A., Barrow, J. D., Churchill, C. W., Prochaska, J. X., and Wolfe, A. M. (2001). Phys. Rev. Lett. 87, 091301; astro-ph/0012539.Google Scholar
  29. [29]
    Sandvik, H. B., Barrow, J. D., and Magueijo, J. (2002). Phys. Rev. Lett. 88, 031302; astro-ph/0107512.Google Scholar
  30. [30]
    Barrow, J. D., Magueijo, J., and Sandvik, H. B. (2002). Phys. Rev. D 66, 043515; astro-ph/0202129.Google Scholar
  31. [31]
    Magueijo, J., Barrow, J. D., and Sandvik, H. B. (2002). astro-ph/0202374.Google Scholar
  32. [32]
    Youm, D. (2001). hep-th/0108237.Google Scholar
  33. [33]
    Youm, D. (2002). Mod. Phys. Lett. A 17, 175; hep-th/0111118.Google Scholar
  34. [34]
    Seahra, S. S., and Wesson, P. S. (2001). Gen. Rel. Grav. 33, 1731; gr-qc/0105041.Google Scholar
  35. [35]
    Mashhoon, B., Liu, H., and Wesson, P. S. (1994). Phys. Lett. B 331, 305.Google Scholar
  36. [36]
    Liu, H., and Mashhoon, B. (2000). Phys. Lett. A 272, 26; gr-qc/0005079.Google Scholar
  37. [37]
    Billyard, A. P., and Sajko, W. N. (2001). Gen. Rel. Grav. 33, 1929; gr-qc/0105074.Google Scholar
  38. [38]
    Wesson, P. S., and Seahra, S. S. (2001). Astrophys. J. L 75, 557.Google Scholar
  39. [39]
    Ponce de Leon, J. (2002). Int. J. Mod. Phys. D 11, 1355; (2001). gr-qc/0105120.Google Scholar
  40. [40]
    Landau, L., and Lifshitz, E. (1975). The Classical Theory of Fields, 4th ed. (Pergamon, New York).Google Scholar
  41. [41]
    Bekenstein, J. D. (1982). Phys. Rev. D 25, 1527.Google Scholar
  42. [42]
    Kocinski, J., and Wierzbicki, M. (2001). gr-qc/0110075.Google Scholar
  43. [43]
    Tiwari, R. N., Rao, J. R., and Kanakamedala, R. R. (1984). Phys. Rev. D 30, 489.Google Scholar
  44. [44]
    Gautreau, R. (1985). Phys. Rev. D 31, 1860.Google Scholar
  45. [45]
    Grøn, ø. (1986). Gen. Rel. Grav. 18, 591.Google Scholar
  46. [46]
    Ponce de Leon, J. (1987). Gen. Rel. Grav. 19, 797.Google Scholar
  47. [47]
    Ponce de Leon, J. (1988). J. Math. Phys 29, 197.Google Scholar
  48. [48]
    Wesson, P. S. (2002). Phys. Lett. B 538, 159.Google Scholar
  49. [49]
    Ponce de Leon, J. (2001). Mod. Phys. Lett. A 16, 1405; gr-qc/0106020.Google Scholar
  50. [50]
    Ponce de Leon, J. (2002). gr-qc/0207001.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • J. Ponce de Leon
    • 1
  1. 1.Laboratory of Theoretical Physics, Department of PhysicsUniversity ofSan Juan, PRPuerto Rico

Personalised recommendations