Journal of Biological Physics

, Volume 29, Issue 2–3, pp 195–199

Status of THz-to-Visible Nanospectroscopy Development

  • F. Keilmann


Quite unexpectedly, THz and infraredspectroscopy has now a real chance to solveproblems in the nanosciences. This rests ona new microscope technique that overcomesthe Abbe diffraction limit, by using thenear field of a metal antenna in closeproximity to a scanned sample surface. HereI briefly summarize present activities inthe microwave, mid-infrared and visiblespectral ranges. It seems straightforwardand highly desirable to fill the existinggap between about 20 GHz and 20 THz, andattain spatial resolution of 10 nm andbelow also in this important part of theelectromagnetic spectrum.

infrared microscopy infrared spectroscopy microscopy near-field microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daneu, V., Sokoloff, D., Sanchez, A. and Javan, A.: Extension of Laser Harmonic-Frequency Mixing Techniques into the 9µ Region with an Infrared Metal-Metal Point-Contact Diode,Appl. Phys. Lett. 15 (1969), 398-401.Google Scholar
  2. 2.
    Matarrese, L.M. and Evenson, K.M.: Improved Coupling to Infrared Whisker Diodes by Use of Antenna Theory,Appl. Phys. Lett. 17 (1970), 8-10.Google Scholar
  3. 3.
    Sanchez, A., Davis, C.F., Liu, K.C. and Javan, A.: The MOM Tunneling Diode: Theoretical Estimate of its Performance at Microwave and Infrared Frequencies,J. Appl. Phys. 49 (1978), 5270-5277.Google Scholar
  4. 4.
    Bryant, C.A. and Gunn, J.B.: Noncontact Technique for the Local Measurement of Semiconductor Resistivity,Rev. Sci. Instr. 36 (1965), 1614-1617.Google Scholar
  5. 5.
    Stuchly, M.A. and Stuchly, S.S.: Coaxial Line Rreflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies,Trans. Instr. Meas. 31 (1980), 176-183.Google Scholar
  6. 6.
    Keilmann, F.:U.S. Patent 4,994,818 (1988).Google Scholar
  7. 7.
    Fee, M., Chu, S. and Hänsch, T.W.: Scanning Electromagnetic Transmission Line Microscope with Sub-Wavelength Resolution,Optics Commun. 69 (1989), 219-224.Google Scholar
  8. 8.
    Asami, K.: The Scanning Dielectric Microscope,Meas. Sci. Technol. 5 (1994), 589-592.Google Scholar
  9. 9.
    Keilmann, F., Weide, D.W. v.d., Eickelkamp, T., Merz, R. and Stöckle, D.: Extreme Sub-Wavelength Resolution with a Scanning Radio-Frequency Transmission Microscope,Optics Commun. 129 (1996), 15-18.Google Scholar
  10. 10.
    Knoll, B., Keilmann, F., Kramer, A. and Guckenberger, R.: Contrast of Microwave Near-Field Microscopy,Appl. Phys. Lett. 70 (1997), 2667-2669.Google Scholar
  11. 11.
    Cho, Y., Kirihana, A. and Saeki, T.: Scanning Nonlinear Dielectric Microscope,Rev. Sci. Instr. 67 (1996), 2297-2303.Google Scholar
  12. 12.
    Wei, T., Xiang, X.D., Wallace-Freedman, W.G. and Schultz, P.G.: Scanning Tip Microwave Near-Field Microscope,Appl. Phys. Lett. 68 (1996), 3506-3508.Google Scholar
  13. 13.
    Vlahacos, C.P., Black, R.C., Anlage, S.M., Amar, A. and Wellstood, F.C.: Near-Field Scanning Microwave Microscope with 100µm Resolution,Appl. Phys. Lett. 69 (1996), 3272-3274.Google Scholar
  14. 14.
    Anlage, S.M., Steinhauer, D.E., Feenstra, B.J., Vlahacos, C.P. and Wellstood, F.C.: In: H. Weinstock, H. and M. Nisenoff (eds.),Microwave Superconductivity, Kluwer, Amsterdam, 2001, 239-269.Google Scholar
  15. 15.
    Rosner, B., Peck, J. and Weide, D. v.d.: Near-Field Antennas Integrated with Scanning Probes for THz to Visible Microscopy: Scale Modelling and Limitations on Performance,IEEE Transactions on Antennas and Propagation 50 (2002), 670-675.Google Scholar
  16. 16.
    Valk, N.C.J. v.d. and Planken, P.C.M.: Electro-Optic Detection of Subwavelength Terahertz Spot Sizes in the Near Field of a Metal Tip,Appl. Phys. Lett. 81 (2002), 1558-1560.Google Scholar
  17. 17.
    Völcker, M., Krieger,W. and Walther, H.: Laser-Driven Scanning Tunneling Microscope,Phys. Rev. Lett. 66 (1991), 1717-1720.Google Scholar
  18. 18.
    Völcker, M., Krieger, W. and Walther, H.: Detection of Local Conductivity by Laser-Frequency Mixing in a Scanning Force Microscope,J. Appl. Phys. 74 (1993), 5426-5431.Google Scholar
  19. 19.
    Lahrech, A., Bachelot, R., Gleyzes, P. and Boccara, A.C.: Infrared-Reflection-Mode Near-Field Microscopy using an Apertureless Probe with a Resolution ofλ/600,Optics Lett. 2 (1996), 1315-1317.Google Scholar
  20. 20.
    Keilmann, F.: In: M.N.-V.a.N. Garcia (ed.),Towards SNIM: Scanning Near-Field Microscopy in the Infrared, Kluwer, Doordrecht, 1996.Google Scholar
  21. 21.
    Lahrech, A., Bachelot, R., Gleyzes, P. and Boccara, A.C.: Infrared Near-Field Imaging of Implanted Semiconductors: Evidence of a Pure Dielectric Contrast,Appl. Phys. Lett. 71 (1997), 575-577.Google Scholar
  22. 22.
    Knoll, B. and Keilmann, F.: Scanning Microscopy by Mid-Infrared Near-Field Scattering,Appl. Phys. A 66 (1998), 477-481.Google Scholar
  23. 23.
    Knoll, B. and Keilmann, F.: Near-Field Probing of Vibrational Absorption for Chemical Microscopy,Nature 399 (1999), 134-137.Google Scholar
  24. 24.
    Keilmann, F., Knoll, B. and Kramer, A.: Long-Wave-Infrared Near-Field Microscopy,Physica Status Solidi (b) 215 (1999), 849-854.Google Scholar
  25. 25.
    Knoll, B. and Keilmann, F.: Mid-infrared Scanning Near-Field Optical Microscope resolves 30 nm,J. Micr. 194 (1999), 512-515.Google Scholar
  26. 26.
    Knoll, B. and Keilmann, F.: Enhanced Dielectric Contrast in Scattering-Type Scanning Near-Field Optical Microscopy,Optics Commun. 182 (2000), 321-328.Google Scholar
  27. 27.
    Knoll, B. and Keilmann, F.: Infrared Conductivity Mapping for Nanoelectronics,Appl. Phys. Lett. 77 (2000), 3980-3982.Google Scholar
  28. 28.
    Hillenbrand, R., Knoll, B. and Keilmann, F.: Pure Optical Contrast in Scattering-Type Scanning Near-Field Optical Microscopy,J. Micr. 202 (2001), 77-83.Google Scholar
  29. 29.
    Hillenbrand, R., Taubner, T. and Keilmann, F.: Phonon-Enhanced Light-Matter Interaction at the Nanometer Scale,Nature 418 (2002), 159-162.Google Scholar
  30. 30.
    Hillenbrand, R., Keilmann, F. and Knoll, B.: German patent application DE 10035134, 2000.Google Scholar
  31. 31.
    Hillenbrand, R. and Keilmann, F.: Complex Optical Constants on a Subwavelength Scale,Phys. Rev. Lett. 85 (2000), 3029-3032.Google Scholar
  32. 32.
    Hillenbrand, R. and Keilmann, F.: Material-Specific Mapping of Metal/Semiconductor/Dielectric Nanosystems at 10 nm Resolution by Back-Scattering Near-Field Optical Microscopy,Appl. Phys. Lett. 80 (2002), 25.Google Scholar
  33. 33.
    Hillenbrand, R. and Keilmann, F.: Optical Oscillation Modes of Plasmon Particles Observed in Direct Space by Phase-Contrast Near-Field Microscopy,Appl. Phys. B 73 (2001), 239-243.Google Scholar
  34. 34.
    Zenhausern, F., O'Boyle, M.P. and Wickramasinghe, H.K.: Apertureless Near-Field Optical Microscope,Appl. Phys. Lett. 65 (1994), 1623-1625.Google Scholar
  35. 35.
    Zenhausern, F., Martin, Y. and Wickramasinghe, H.K.: Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,Science 269 (1995), 1083-1085.Google Scholar
  36. 36.
    Martin, Y., Zenhausern, F. and Wickramasinghe, H.K.: Scattering Spectroscopy of Molecules at Nanometer Resolution,Appl. Phys. Lett. 68 (1996), 2475-2477.Google Scholar
  37. 37.
    Aravind, P.K. and Metiu, H.: The Effects of the Interaction between Resonances in the Electromagnetic Response of a Sphere-Plane Structure; Applications to Surface Enhanced Spectroscopy,Surface Sci. 124 (1983), 506-528.Google Scholar
  38. 38.
    Larsen, R.E. and Metiu, H.: Resolution and Polarization in Apertureless Near-Field Microscopy,J. Chem. Phys. 114 (2001), 6851-6860.Google Scholar
  39. 39.
    Porto, J.A., Carminati, R. and Greffet, J.J.: Theory of Electromagnetic Field Imaging and Spectroscopy in Scanning Near-Field Optical Microscopy,J. Appl. Phys. 88 (2000), 4845-4850.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • F. Keilmann
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations