Advertisement

Hydrobiologia

, Volume 491, Issue 1–3, pp 221–239 | Cite as

Chemically induced anti-predator defences in plankton: a review

  • Sandra Lass
  • Piet Spaak
Article

Abstract

Planktonic organisms exhibit diverse morphological, behavioural and life-history responses to the chemical presence of potential predators. Prey organisms have been found to sense such predators via predator-derived kairomones. The induced reactions are assumed to reduce predation risk and thus to be adaptive. Numerous studies have investigated various aspects of inducible defences in different crustaceans, in rotifers, planktonic ciliates and algae. As a first step, we summarise recent work on chemically induced anti-predator defences in morphology, life history and behaviour. Morphological defences have been found in a wide range of different plankton organisms and recent studies on predator-induced morphologies mainly addressed the question of costs for these changes. Life-history responses were mainly studied in cladocerans and several studies have recently addressed some novel topics, such as diapause induction and the influence of predator kairomones on hatching of resting stages. Behavioural anti-predator defences also have been found for several plankton species and are characterised by relatively fast induction times. We further identified four research directions in which substantial progress has been made recently: (I) The effects of simultaneous exposure to infochemicals from different predators and the consequences of a complex chemical environment. Some environmental contaminants, such as synthetic chemicals or heavy metals, have been found to potentially disturb natural chemical communication in aquatic predator-prey systems. (II) The influence of genetic variation on the reaction to infochemicals and its implications. Clonal differences have not only been found for the presence or absence of a certain trait but also with respect to the type of response. (III) The degree to which different types of responses to a specific kairomone are coupled. Recent studies underline the uncoupling of different anti-predator responses of which some have been considered to be coupled. (IV) Studies on the chemical properties and on the metabolic origin of predator kairomones. Substantial progress has been made recently, especially with respect to the identification of predator kairomones that are important for planktonic ciliates. The identification and isolation of kairomones are an important step towards studies addressing the consequences of predator-induced defences on the level of populations, communities and ecosystems. So far most studies have considered effects and consequences on the level of individual prey organisms and studies taking the consequences at higher ecological levels into account are rare.

inducible defence Daphnia ciliate rotifer algae kairomone adaptation cost identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A. A. & R. Karban, 1998. Why induced defenses may be favored over constitutive strategies in plants. In Harvell, C. D. & R. Tollrian (eds), Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, USA: 45-61.Google Scholar
  2. Agrawal, A. A., C. Laforsch & R. Tollrian, 1999. Transgenerational induction of defences in animals and plants. Nature 401: 60-63.Google Scholar
  3. Barnhisel, D. R., 1991. Zooplankton spine induces aversion in small fish predators. Oecologia 88: 444-450.Google Scholar
  4. Barry, M. J., 1994. The costs of crest induction for Daphnia carinata. Oecologia 97: 278-288.Google Scholar
  5. Barry, M. J., 1998. Endosulfan-enhanced crest induction in Daphnia longicephala: evidence for cholinergic innervation of kairomone receptors. J. Plankton Res. 20: 1219-1231.Google Scholar
  6. Barry, M. J., 1999. Chemical communication in planktonic organisms: environmental contaminants can mimic the effects of natural chemical signals. SETAC Europe News 10: 6-8.Google Scholar
  7. Barry, M. J., 2000. Effects of endosulfan on Chaoborus-induced life-history shifts and morphological defenses in Daphnia pulex. J. Plankton Res. 22: 1705-1718.Google Scholar
  8. Bayly, I. A. E., 1986. Aspects of diel vertical migration in zooplankton, and its enigma variations. In de Deckker, P. & W. D. Williams (eds), Limnology in Australia. Dr W. Junk Publishers, Dordrecht, The Netherlands: 349-368.Google Scholar
  9. Black, A. R., 1993. Predator-induced phenotypic plasticity in Daphnia pulex: life history and morphological responses to Notonecta and Chaoborus. Limnol. Oceanogr. 38: 986-996.Google Scholar
  10. Black, A. R. & S. I. Dodson, 1990. Demographic costs of Chaoborus-induced phenotypic plasticity in Daphnia pulex. Oecologia 83: 117-122.Google Scholar
  11. Blaustein, L., 1997. Non-consumptive effects of larval Salamandra on crustacean prey: can eggs detect predators? Oecologia 110: 212-217.Google Scholar
  12. Boersma, M., L. de Meester & P. Spaak, 1999. Environmental stress and local adaptation in Daphnia magna. Limnol. Oceanogr. 44: 393-402.Google Scholar
  13. Boersma, M., P. Spaak & L. de Meester, 1998. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. Am. Nat. 152: 237-248.Google Scholar
  14. Bollens, S. M. & B. W. Frost, 1989a. Predator-induced diel vertical migration in a planktonic copepod. J. Plankton Res. 11: 1047-1065.Google Scholar
  15. Bollens, S. M. & B. W. Frost, 1989b. Zooplanktivorous fish and variable diel vertical migration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34: 1072-1083.Google Scholar
  16. Bollens, S. M., B. W. Frost & J. R. Cordell, 1994. Chemical, mechanical and visual cues in the vertical migration behavior of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16: 555-564.Google Scholar
  17. Bollens, S.M., B.W. Frost, D. S. Thoreson & S. J. Watts, 1992. Diel vertical migration in zooplankton - field evidence in support of the predator avoidance hypothesis. Hydrobiologia 234: 33-39.Google Scholar
  18. Bollens, S. M. & D. E. Stearns, 1992. Predator-induced changes in the diel feeding cycle of a planktonic copepod. J. Exp. Mar. Biol. Ecol. 156: 179-186.Google Scholar
  19. Boriss, H., M. Boersma & K. H. Wiltshire, 1999. Trimethylamine induces migration of waterfleas. Nature (398): 382. Boriss, H. & W. Gabriel, 1998. Vertical migration in Daphnia: the role of phenotypic plasticity in the migration pattern for competing clones or species. Oikos 83: 129-138.Google Scholar
  20. Brancelj, A., T. Celhar & M. Sisko, 1996. Four different head shapes in Daphnia hyalina (Leydig) induced by the presence of larvae of Chaoborus flavicans (Meigen). Hydrobiologia 339: 37-45.Google Scholar
  21. Brett, M. T., 1992. Chaoborus and fish-mediated influences on Daphnia longispina population structure, dynamics and life history strategies. Oecologia 89: 69-77.Google Scholar
  22. Brewer, M. C., P. Dawidowicz & S. I. Dodson, 1999. Interactive effects of fish kairomone and light on Daphnia escape behavior. J. Plankton Res. 21: 1317-1335.Google Scholar
  23. Burks, R. L., E. Jeppesen & D. M. Lodge, 2000. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88: 139-147.Google Scholar
  24. Burks, R. L., E. Jeppesen & D. M. Lodge, 2001a. Littoral zone structures as Daphnia refugia against fish predators. Limnol. Oceanogr. 46: 230-237.Google Scholar
  25. Burks, R. L., E. Jeppesen & D. M. Lodge, 2001b. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J.N. am. Benthol. Soc. 20: 615-628.Google Scholar
  26. Caramujo, M. J. & M. J. Boavida, 2000. Induction and costs of tail spine elongation in Daphnia hyalina × galeata: reduction of susceptibility to copepod predation. Freshwat. Biol. 45: 413- 423.Google Scholar
  27. Chapman, M. A. & C. W. Burns, 1994. Polymorphism and food limitation in three Daphnia carinata populations. Int. Rev. ges. Hydrobiol. 79: 477-509.Google Scholar
  28. Cieri, M. D. & D. E. Stearns, 1999. Reduction of grazing activity of two estuarine copepods in response to the exudate of a visual predator. Mar. Ecol. Progr. Ser. 177: 157-163.Google Scholar
  29. Cousyn, C., L. de Meester, J. K. Colbourne, L. Brendonck, D. Verschuren & F. Volckaert, 2001. Rapid local adaptation of zooplankton behavior to changes in predation pressure in absence of neutral genetic changes. Proc. Natl. Acad. Sci. U.S.A. 98: 6256-6260.PubMedGoogle Scholar
  30. Dang Kieu, N., E. Michels & L. de Meester, 2001. Phototactic behavior of Daphnia and the continuous monitoring of water quality: interference of fish kairomones and food quality. Environ. Toxicol. Chem. 20: 1098-1103.PubMedGoogle Scholar
  31. Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnol. Oceanogr. 37: 1589-1595.Google Scholar
  32. de Beauchamp, P., 1952a. Un facteur de la variabilité chez les rotifrès du genre Brachionus. Comptes rend. Acad. Sci. 234: 573-575.Google Scholar
  33. de Beauchamp, P., 1952b. Variation chez les rotifrès du genre Brachionus. Comptes rend. Acad. Sci. 235: 1355-1356.Google Scholar
  34. de Meester, L., 1990. Evidence for intra-population genetic variability for phototactic behaviour in Daphnia magna Straus, 1820. Biol. Jb. Dodonaea 58: 84-93.Google Scholar
  35. de Meester, L., 1993. Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology 74: 1467-1474.Google Scholar
  36. de Meester, L., 1994. Life histories and habitat selection in Daphnia: divergent life histories of D. magna clones differing in phototactic behaviour. Oecologia 97: 333-341.Google Scholar
  37. de Meester, L., 1995. Life history characteristics of Daphnia magna clones differing in phototactic behaviour. Hydrobiologia 307: 167-175.Google Scholar
  38. de Meester, L., 1996a. Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution 50: 1293-1298.Google Scholar
  39. de Meester, L., 1996b. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3: 385-399.Google Scholar
  40. de Meester, L. & C. Cousyn, 1997. The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones: the effect of exposure time. Hydrobiologia 360: 169-175.Google Scholar
  41. de Meester, L. & J. Pijanowska, 1996. On the trait-specificity of the response of Daphnia genotypes to the chemical presence of a predator. In Lenz, P. H., D. K. Hartline, J. E. Purcell & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, Amsterdam, The Netherlands: 407-417.Google Scholar
  42. de Meester, L. & L. J. Weider, 1999. Depth selection behavior, fish kairomones, and the life histories of Daphnia hyalina × galeata hybrid clones. Limnol. Oceanogr. 44: 1248-1258.Google Scholar
  43. de Meester, L., L. J. Weider & R. Tollrian, 1995. Alternative anti-predator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483-485.Google Scholar
  44. DeWitt, T. J., A. Sih & D. S. Wilson, 1998. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13: 77-81.Google Scholar
  45. Dicke, M. & M. W. Sabelis, 1992. Costs and benefits of chemical information conveyance: proximate and ultimate factors. In Roitberg, B. D. & M. B. Isman (eds), Insect Chemical Ecology: An Evolutionary Approach. Chapman and Hall, New York, U.S.A.: 122-155.Google Scholar
  46. Dodson, S. I., 1988. The ecological role of chemical stimuli for the zooplankton: predator-avoidance bahavior in Daphnia. Limnol. Oceanogr. 33: 1431-1439.Google Scholar
  47. Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361-367.Google Scholar
  48. Dodson, S. I., T. Hanazato & P. R. Gorski, 1995. Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environ. Toxicol. Chem. 14: 43-50.Google Scholar
  49. Dodson, S. I., S. Ryan, R. Tollrian & W. Lampert, 1997a. Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. J. Plankton Res. 19: 1537-1552.Google Scholar
  50. Dodson, S. I., R. Tollrian & W. Lampert, 1997b. Daphnia swimming behavior during vertical migration. J. Plankton Res. 19: 969-978.Google Scholar
  51. Dodson, S. I. & A. E. Wagner, 1996. Temperature affects selectivity of Chaoborus larvae-eating Daphnia. Hydrobiologia 325: 157-161.Google Scholar
  52. Forward Jr, R. B. & D. Rittschof, 1993. Activation of photoresponses of brine shrimp nauplii involved in diel vertical migration by chemical cues from fish. J. Plankton Res. 15: 693-701.Google Scholar
  53. Forward Jr, R. B. & D. Rittschof, 1999. Brine shrimp larval photoresponses involved in diel vertical migration: Activation by fish mucus and modified amino sugars. Limnol. Oceanogr. 44: 1904-1916.Google Scholar
  54. Fyda, J. & K. Wiackowski, 1998. Benefits and costs of predatorinduced morphological changes in the ciliate Colpidium kleini. Euro. J. Protistol. 34: 118-123.Google Scholar
  55. Giguère, L. A. & T. G. Northcote, 1987. Ingested prey increase risks of visual predation in transparent Chaoborus larvae. Oecologia 73: 48-52.Google Scholar
  56. Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234-1237.PubMedGoogle Scholar
  57. Gilbert, J. J., 1967. Asplanchna and postero-lateral spine production in Brachionus calyciflorus. Arch. Hydrobiol. 64: 1-62.Google Scholar
  58. Gilbert, J. J. & S. E. Hampton, 2001. Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidanceresponse cascade by notonectids. Freshwat. Biol. 46: 611-621.Google Scholar
  59. Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26: 201-218.Google Scholar
  60. Hairston, N. G., 1987. Diapause as a predator avoidance adaptation. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, U.S.A.: 281-290.Google Scholar
  61. Hamren, U. & S. Hansson, 1999. A mysid shrimp (Mysis mixta) is able to detect the odour of its predator (Clupea harengus). Ophelia 51: 187-191.Google Scholar
  62. Hanazato, T., 1992. Insecticide inducing helmet development in Daphnia ambigua. Arch. Hydrobiol. 123: 451-457.Google Scholar
  63. Hanazato, T., 1995. Combined effect of the insecticide carbaryl and the Chaoborus kairomone on helmet development in Daphnia ambigua. Hydrobiologia 310: 95-100.Google Scholar
  64. Hanazato, T., 1999. Anthropogenic chemicals (insecticides) disturb natural organic chemical communication in the plankton community. Environ. Pollut. 105: 137-142.Google Scholar
  65. Hanazato, T., 2001. Pesticide effects on freshwater zooplankton: an ecological perspective. Environ. Pollut. 112: 1-10.PubMedGoogle Scholar
  66. Hanazato, T. & S. I. Dodson, 1992. Complex effects of a kairomone of Chaoborus and an insecticide on Daphnia pulex. J. Plankton Res. 14: 1743-1755.Google Scholar
  67. Hanazato, T. & S. I. Dodson, 1993. Morphological responses of four species of cyclomorphic Daphnia to a short-term exposure to the insecticide carbaryl. J. Plankton Res. 15: 1087-1095.Google Scholar
  68. Hanazato, T. & S. I. Dodson, 1995. Synergistic, effects of low oxygen concentration, predator kairomone, and a pesticide on the cladoceran Daphnia pulex. Limnol. Oceanogr. 40: 700-709.Google Scholar
  69. Hansson, L. A., 1996. Behavioural response in plants: adjustment in algal recruitment induced by herbivores. Proc. R. Soc. Lond. B 263: 1241-1244.Google Scholar
  70. Hansson, L. A., 2000. Synergistic effects of food chain dynamics and induced behavioral responses in aquatic ecosystems. Ecology 81: 842-851.Google Scholar
  71. Harvell, C. D., 1990. The ecology and evolution of inducible defences. Q. Rev. Biol. 65: 323-340.PubMedGoogle Scholar
  72. Havel, J., 1987. Predator-induced defences: a review. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, U.S.A.: 263-278.Google Scholar
  73. Hebert, P. D. N., 1974a. Enzyme variability in natural populations of Daphnia magna. II. Genotypic frequencies in permanent populations. Genetics 77: 323-334.PubMedGoogle Scholar
  74. Hebert, P. D. N., 1974b. Enzyme variability in natural populations of Daphnia magna. III. Genotypic frequencies in intermittent populations. Genetics 77: 335-341.PubMedGoogle Scholar
  75. Hebert, P. D. N. & P. M. Grewe, 1985. Chaoborus-induced shifts in the morphology of Daphnia ambigua. Limnol. Oceanogr. 30: 1291-1297.Google Scholar
  76. Heller, R. & M. Milinski, 1979. Optimal foraging of sticklebacks on swarming prey. Anim. Behav. 27: 1127-1141.Google Scholar
  77. Hendry, A. C. & C. W. Burns, 2001. Do potential predators induce an avoidance response in Daphnia carinata? NZ J. Mar. Freshwater Res. 35: 155-164.Google Scholar
  78. Hessen, D. O. & E. van Donk, 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch. Hydrobiol. 127: 129-140.Google Scholar
  79. Horppila, J., 1997. Diurnal changes in the vertical distribution of cladocerans in a biomanipulated lake. Hydrobiologia 345: 215-220.Google Scholar
  80. Jacobs, J., 1967. Untersuchungen zur Funktion und Evolution der Zyklomorphose bei Daphnia, mit besonderer Berücksichtigung der Selektion durch Fische. Arch. Hydrobiol. 62: 467-541.Google Scholar
  81. Jensen, K. H., P. J. Jakobsen & O. T. Kleiven, 1998. Fish kairomone regulation of internal swarm structure in Daphnia pulex (Cladocera: Crustacea). Hydrobiologia 368: 123-127.Google Scholar
  82. Kamra, K. & G. R. Sapra, 1994. Quantitative regulation of ciliary structures in polymorphic states of the hypotrichous ciliate Onychodromus indica. Euro. J. Protistol. 30: 379-393.Google Scholar
  83. Kats, L. B. & L. M. Dill, 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5: 361- 394.Google Scholar
  84. Kerfoot, W. C. & A. Sih eds, 1987. Predation: Direct and indirect impacts on aquatic communities. Hanover, U.S.A., University Press of New England.Google Scholar
  85. Kleiven, O. T., P. Larsson & A. Hobæk, 1996. Direct distributional response in Daphnia pulex to a predator kairomone. J. Plankton Res. 18: 1341-1348.Google Scholar
  86. Krueger, D. A. & S. I. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219- 223.Google Scholar
  87. Kuhlmann, H.-W., 1992. Benefits and costs of predator-induced defences in Euplotes. J. Protozool. 39: 49A.Google Scholar
  88. Kuhlmann, H.-W., 1994. Escape response of Euplotes octocarinatus to turbellarian predators. Arch. Protistenkd. 144: 163-171.Google Scholar
  89. Kuhlmann, H.-W. & K. Heckmann, 1985. Interspecific morphogens regulating prey-predator relationships in protozoa. Science 227: 1347-1349.Google Scholar
  90. Kuhlmann, H.-W. & K. Heckmann, 1994. Predation risk of typical ovoid and 'winged' morphs of Euplotes (Protozoa, Ciliophora). Hydrobiologia 284: 219-227.Google Scholar
  91. Kusch, J., 1993a. Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus. Oecologia 96: 354-359.Google Scholar
  92. Kusch, J., 1993b. Induction of defensive morphological changes in ciliates. Oecologia 94: 571-575.Google Scholar
  93. Kusch, J., 1993c. Predator-induced changes in Euplotes (Ciliata); Isolation of the inducing substance released from Stenostomum sphagnetorum (Turbellaria). J. Exp. Zool. 841: 613-618.Google Scholar
  94. Kusch, J., 1995. Adaptation of inducible defense in Euplotes daidaleos (Ciliophora) to predation risks by various predators. Microb. Ecol. 30: 79-88.Google Scholar
  95. Kusch, J., 1998. Long-term effects of inducible defense. Ecoscience 5: 1-7.Google Scholar
  96. Kusch, J., 1999. Self-recognition as the original function of an amoeban defense-inducing kairomone. Ecology 80: 715-720.Google Scholar
  97. Kusch, J. & K. Heckmann, 1992. Isolation of the Lembadion-factor, a morphogenetically active signal, that induces Euplotes cells to change from their ovoid form into a larger lateral winged morph. Dev. Genet. 13: 241-246.Google Scholar
  98. Kusch, J. & H.-W. Kuhlmann, 1994. Cost of Stenostomum-induced morphological defence in the ciliate Euplotes octocarinatus. Arch. Hydrobiol. 130: 257-267.Google Scholar
  99. Kvam, O. V. & O. T. Kleiven, 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia 307: 177-184.Google Scholar
  100. Lampert, W., 1987. Vertical migration of freshwater zooplankton: indirect effects of vertebrate predators on algal communities. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, U.S.A.: 291-299.Google Scholar
  101. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 79-88.Google Scholar
  102. Lampert, W., K. O. Rothhaupt & E. von Elert, 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39: 1543-1550.Google Scholar
  103. Larsson, P. & S. I. Dodson, 1993. Chemical communication in planktonic animals. Arch. Hydrobiol. 129: 129-155.Google Scholar
  104. Lass, S., M. Boersma, K. H. Wiltshire, P. Spaak & H. Boriss, 2001. Does trimethylamine induce life-history reactions in Daphnia? Hydrobiologia 442: 199-206.Google Scholar
  105. Lauridsen, T. L., E. Jeppesen, S. F. Mitchell, D. M. Lodge & R. L. Burks, 1999. Diel variation in horizontal distribution of Daphnia and Ceriodaphnia in oligotrophic and mesotrophic lakes with contrasting fish densities. Hydrobiologia 409: 241-250.Google Scholar
  106. Lauridsen, T. L., E. Jeppesen, M. Sondergaard & D. M. Lodge, 1998. Horizontal Migration of Zooplankton: Predator-mediated Use of Macrophyte Habitat, Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, Berlin, Germany 13: 233-239.Google Scholar
  107. Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794-798.Google Scholar
  108. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Sondergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283-2294.Google Scholar
  109. Loose, C. J., 1993. Daphnia diel vertical migration behavior: response to vertebrate predator abundance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 29-36.Google Scholar
  110. Loose, C. J. & P. Dawidowicz, 1994. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75: 2255-2263.Google Scholar
  111. Loose, C. J., E. von Elert & P. Dawidowicz, 1993. Chemically- induced diel vertical migration in Daphnia - a new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329-337.Google Scholar
  112. Lüning, J., 1992. Phenotypic plasticity of Daphnia pulex in the presence of invertebrate predators - morphological and life history responses. Oecologia 92: 383-390.Google Scholar
  113. Lüning, J., 1994. Anti-predator defenses in Daphnia - are lifehistory changes always linked to induced neck spines. Oikos 69: 427-436.Google Scholar
  114. Lüning, J., 1995a. How do predator-induced changes affect prey vulnerability? Larvae of Chaoborus flavicans (Diptera: Chaoboridae) feeding on Daphnia pulex (Crustacea: Cladocera). Freshwat. Biol. 34: 523-530.Google Scholar
  115. Lüning, J., 1995b. Life-history responses to Chaoborus of spined and unspined Daphnia pulex. J. Plankton Res. 17: 71-84.Google Scholar
  116. Lürling, M., 1998. Effect of grazing-associated infochemicals on growth and morphological, development in Scenedesmus acutus (chlorophyceae). J. Phycol. 34: 578-586.Google Scholar
  117. Lürling, M., 1999a. Grazer-induced coenobial formation in clonal cultures of Scenendesmus obliquus (Chlorococcales, Chlorophyceae). J. Phycol. 35: 19-23.Google Scholar
  118. Lürling, M., 1999b. The smell of water - Grazer-induced colony formation in Scenedesmus. Ph.D. Thesis, Agricultural University Wageningen, Wageningen, The Netherlands: 270 pp.Google Scholar
  119. Lürling, M. & W. Beekman, 1999. Grazer-induced defenses in Scenedesmus (Chlorococcales; Chlorophyceae): coenobium and spine formation. Phycologia 38: 368-376.Google Scholar
  120. Lürling, M. & E. van Donk, 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr. 42: 783-788.Google Scholar
  121. Lürling, M. & E. van Donk, 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88: 111–118.Google Scholar
  122. Lynch, M., 1980. The evolution of cladoceran life histories. Q. Rev. Biol. 55: 23-42.Google Scholar
  123. Lysebo, E. M., 1995. Behavioural and morphological changes in polymorphic Daphnia related to different predation regimes. Hydrobiologia 307: 185-191.Google Scholar
  124. Machá?ek, J., 1991. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia 225: 193-197.Google Scholar
  125. Machá?ek, J., 1993. Comparison of the response of Daphnia galeata and Daphnia obtusa to fish-produced chemical substance. Limnol. Oceanogr. 38: 1544-1550.Google Scholar
  126. Machá?ek, J., 1995. Inducibility of life history changes by fish kairomone in various developmental stages of Daphnia. J. Plankton Res. 17: 1513-1520.Google Scholar
  127. Marinone, M. C. & H. E. Zaragese, 1991. A field and laboratory study on factors affecting polymorphism in the rotifer Keratella tropica. Oecologia 86: 372-377.Google Scholar
  128. Matsuda, H., M. Hori & P. A. Abrams, 1994. Effects of predatorspecific defence on community complexity. Evol. Ecol. 8: 628- 638.Google Scholar
  129. McKelvey, L. M. & R. B. Forward Jr, 1995. Activation of brine shrimp nauplii photoresponses involved in diel vertical migration by chemical cues from visual and non-visual planktivores. J. Plankton Res. 17: 2191-2206.Google Scholar
  130. Michels, E., M. Leynen, C. Cousyn, L. de Meester & F. Ollevier, 1999. Phototactic behavior of Daphnia as a tool in the continuous monitoring of water quality: experiments with a positively phototactic Daphnia magna clone. Water Res. 33: 401-408.Google Scholar
  131. Michels, E., S. Semsari, C. Bin & L. de Meester, 2000. Effect of sublethal doses of cadmium on the phototactic behavior of Daphnia magna. Ecotox. Env. Saf. 47: 261-265.Google Scholar
  132. Mikulski, A., 2001. The presence of fish induces the quick release of offspring by Daphnia. Hydrobiologia 442: 195-198.Google Scholar
  133. Neill, W. E., 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345: 524-525.Google Scholar
  134. Nordlund, D. A. & W. J. Lewis, 1976. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J. Chem. Ecol. 2: 211-220.Google Scholar
  135. O'Bryan, L. M. & G. E. Forrester, 1997. Effects of fish presence and simulated moonlight gradients on night time horizontal movements of a predatory zooplankter, Chaoborus punctipennis. J. Plankton Res. 19: 1441-1453.Google Scholar
  136. Ohman, M. D., B. W. Frost & E. B. Cohen, 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science 220: 1404-1407.Google Scholar
  137. Parejko, K. & S. I. Dodson, 1991. The evolutionary ecology of an antipredator reaction norm - Daphnia pulex and Chaoborus americanus. Evolution 45: 1665-1674.Google Scholar
  138. Peters-Regehr, T., J. Kusch & K. Heckmann, 1997. Primary structure and origin of a predator released protein that induces defensive morphological changes in Euplotes. Euro. J. Protistol. 33: 389-395.Google Scholar
  139. Petranka, J. W., 1989. Response of toad tadpoles to conflicting chemical stimuli: predator avoidance versus 'ptimal'foraging. Herpetologica 45: 283-292.Google Scholar
  140. Pijanowska, J., 1994. Fish-enhanced patchiness in Daphnia distribution. Verh. Internat. Verein. Limnol. 25: 2366-2368.Google Scholar
  141. Pijanowska, J., 1997. ignals in Daphnia. cologia 112: 12-16.Google Scholar
  142. Pijanowska, J. & A. Kowalczewski, 1997a. Cues from injured Daphnia and from cyclopoids feeding on Daphnia can modify life histories of conspecifics. Hydrobiologia 350: 99-103.Google Scholar
  143. Pijanowska, J. & A. Kowalczewski, 1997b. Predators can induce swarming behaviour and locomotory responses in Daphnia. Freshwat. Biol. 37: 649-656.Google Scholar
  144. Pijanowska, J. & G. Stolpe, 1996. Summer diapause in Daphnia as a reaction to the presence of fish. J. Plankton Res. 18: 1407-1412.Google Scholar
  145. Pohnert, G. & E. von Elert, 2000. No ecological relevance of trimethylamine in fish-Daphnia interactions. Limnol. Oceanogr. 45: 1153-1156.Google Scholar
  146. Preston, B. L., G. Cecchine & T. W. Snell, 1999a. Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquat. Toxicol. 44: 201-212.Google Scholar
  147. Preston, B. L., T. W. Snell & D. Dusenbery, 1999b. The effects of sublethal pentachlorophenol exposure on predation risk in freshwater rotifer species. Aquat. Toxicol. 47: 93-105.Google Scholar
  148. Reede, T., 1995. Life history shifts in response to different levels of fish kairomones in Daphnia. J. Plankton Res. 17: 1661-1667.Google Scholar
  149. Reede, T., 1997a. Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphnia hyalina × galeata to fish kairomones. Freshwat. Biol. 37: 389- 396.Google Scholar
  150. Reede, T., 1997b. Preliminary experiments on resource competition between a migrating and a non-migrating clone of the hybrid D. galeata × hyalina. Hydrobiologia 360: 109-115.Google Scholar
  151. Reede, T. & J. Ringelberg, 1995. The influence of a fish exudate on two clones of the hybrid Daphnia galeata × hyalina. Hydrobiologia 307: 207-212.Google Scholar
  152. Reede, T. & J. Ringelberg, 1998. Differential life history responses of several pelagic Daphnia clones differing in migratory behaviour. Aquat. Ecol. 32: 245-253.Google Scholar
  153. Rengefors, K., I. Karlsson & L. A. Hansson, 1998. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. Lond. B 265: 1353-1358.Google Scholar
  154. Repka, S., M. Ketola & M. Walls, 1994. Specificity of predatorinduced neck spine and alteration in life history traits in Daphnia pulex. Hydrobiologia 294: 129-140.Google Scholar
  155. Repka, S. & K. Pihlajamaa, 1996. Predator-induced phenotypic plasticity in Daphnia pulex: uncoupling morphological defenses and life history shifts. Hydrobiologia 339: 67-71.Google Scholar
  156. Repka, S., M. Walls & M. Ketola, 1995. Neck spine protects Daphnia pulex from predation by Chaoborus, but individuals with longer tail spine are at a greater risk. J. Plankton Res. 17: 393-403.Google Scholar
  157. Ringelberg, J., 1987. Light induced behaviour in Daphnia. In Peters, R. H. & R. De Bernardi (eds), "phnia' Pallanza, Italy, Mem. Inst. Ital. Idrobiol 45: 285-323.Google Scholar
  158. Ringelberg, J., 1991. Enhancement of the phototactic reaction in Daphnia-hyalina by a chemical mediated by juvenile perch (Perca-fluviatilis). J. Plankton Res. 13: 17-25.Google Scholar
  159. Ringelberg, J., 1993. Phototaxis as a behavioural component of diel vertical migration in a pelagic Daphnia. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 45-55.Google Scholar
  160. Ringelberg, J., 1997. Some suggestions for future cladoceran research. Hydrobiologia 360: 291-294.Google Scholar
  161. Ringelberg, J., 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. Cambridge. Phil. Soc. 74: 397-423.Google Scholar
  162. Ringelberg, J. & B. J. G. Flik, 1994. Increased phototaxis in the field leads to enhanced diel vertical migration. Limnol. Oceanogr. 39: 1855-1864.Google Scholar
  163. Ringelberg, J., B. J. G. Flik, D. Aanen & E. van Gool, 1997. Amplitude of diel vertical migration (DVM) is a function of fish biomass, a hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 71-78.Google Scholar
  164. Ringelberg, J., B. J. G. Flik, D. Lindenaar & K. Royackers, 1991a. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part 2. Aspects of population dynamics. Arch. Hydrobiol. 122: 385-401.Google Scholar
  165. Ringelberg, J., B. L. G. Flik, D. Lindenaar & K. Royackers, 1991b. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part: 1. Aspects of seasonal and daily timing. Arch. Hydrobiol. 121: 129-145.Google Scholar
  166. Ringelberg, J. & E. van Gool, 1995. Migrating Daphnia have a memory for fish kairomones. Mar. Freshwat. Behav. Physiol. 26: 249-257.Google Scholar
  167. Ringelberg, J. & E. van Gool, 1998. Do bacteria, not fish, produce 'ish kairomone' J. Plankton Res. 20: 1847-1852.Google Scholar
  168. Sakwi?ska, O., 2000. Trimethylamine does not trigger antipredatory life history shifts in Daphnia. Limnol. Oceanogr. 45: 988-990.Google Scholar
  169. Scheiner, S. M. & D. Berrigan, 1998. The genetics of phenotypic plasticity. VIII. The cost of plasticity in Daphnia pulex. Evolution 52: 368-378.Google Scholar
  170. Sih, A., G. Enlund & D. Wooster, 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13: 350-355.Google Scholar
  171. ?lusarczyk, M., 1995. Predator-induced diapause in Daphnia. Ecology 76: 1008-1013.Google Scholar
  172. ?lusarczyk, M., 1999. Predator-induced diapause in Daphnia magna may require two chemical cues. Oecologia 119: 159-165.Google Scholar
  173. ?usarczyk, M., 2001. Food threshold for diapause in Daphnia under the threat of fish predation. Ecology 82: 1089-1096.Google Scholar
  174. Snell, T. W., 1998. Chemical ecology of rotifers. Hydrobiologia 387/388: 267-276.Google Scholar
  175. Spaak, P., 1996. Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for backcrossing. Heredity 76: 539-548.Google Scholar
  176. Spaak, P. & M. Boersma, 1997. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish. Aquat. Ecol. 31: 89-98.Google Scholar
  177. Spaak, P. & M. Boersma, 2001. The influence of fish kairomones on the induction and vertical distribution of sexual individuals of the Daphnia galeata species complex. Hydrobiologia 442: 185-193.Google Scholar
  178. Spitze, K., 1992. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139: 229-247.Google Scholar
  179. Stemberger, R. S., 1988. Reproductive costs and hydrdynamic bene-fits of chemically induced defenses in Keratella testudo. Limnol. Oceanogr. 33: 593-606.Google Scholar
  180. Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639-647.Google Scholar
  181. Stibor, H., 1992. Predator-induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162-165.Google Scholar
  182. Stibor, H., 1995. Chemische informationen in limnischen Räuber- Beute Systemen: Der EffeKt von Räubersignalen auf den Lebenszyklus von Daphnia spp. (Crustacea, Cladocera). Dissertation Thesis. Christian Albrecht Universität, Kiel, Germany: 148 pp.Google Scholar
  183. Stibor, H. & W. Lampert, 2000. Components of additive variance in life-history traits of Daphnia hyalina: seasonal differences in the response to predator signals. Oikos 88: 129-138.Google Scholar
  184. Stibor, H. & J. Lüning, 1994. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. 8: 97-101.Google Scholar
  185. Stibor, H. & D. M. Navarra, 2000. Constraints on the plasticity of Daphnia magna influenced by fish-kairomones. Funct. Ecol. 14: 455-459.Google Scholar
  186. Stich, H. B. & W. Lampert, 1984. Growth and reproduction of migrating and non-migrating Daphnia species under stimulated food and temperature conditions of diurnal vertical migration. Oecologia 61: 192-196.Google Scholar
  187. Stirling, G., 1995. Daphnia behaviour as a bioassay of fish presence or predation. Funct. Ecol. 9: 778-784.Google Scholar
  188. Strand, S. W. & W. M. Hamner, 1990. Schooling behavior of Antarctic krill (Euphausia superba) in laboratory aquaria: reactions to chemical and visual stimuli. Mar. Biol. 106: 355-360.Google Scholar
  189. Swaffar, S. M. & W. J. O'Brien, 1996. Spines of Daphnia lumholtzi create feeding difficulties for juvenile bluegill-sunfish (Lepomis macrochirus). J. Plankton Res. 18: 1055-1061.Google Scholar
  190. Taleb, H., N. Lair, P. Reyes Marchant & J. L. Jamet, 1993. Observations on vertical migrations of zooplankton at four different stations of a small, eutrophic, temperate zone lake, in relation to their predators. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 199-216.Google Scholar
  191. Tollrian, R., 1993. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity - morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15: 1309-1318.Google Scholar
  192. Tollrian, R., 1994. Fish-kairomone induced morphological changes in Daphnia lumholtzi (Sars). Arch. Hydrobiol. 130: 69-75.Google Scholar
  193. Tollrian, R., 1995a. Chaoborus crystallinus predation on Daphnia pulex: can induced morphological changes balance effects of body size on vulnerability? Oecologia 101: 151-155.Google Scholar
  194. Tollrian, R., 1995b. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691-1705.Google Scholar
  195. Tollrian, R. & S. I. Dodson, 1999. Inducible defenses in cladocera: constraints, costs, and multipredator environments. In Harvell, C. D. & R. Tollrian (eds), Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, U.S.A.: 177-202.Google Scholar
  196. Tollrian, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, U.S.A.: 383 pp.Google Scholar
  197. Tollrian, R. & E. von Elert, 1994. Enrichment and purification of Chaoborus kairomone from water - further steps toward its chemical characterization. Limnol. Oceanogr. 39: 788-796.Google Scholar
  198. van Gool, E. & J. Ringelberg, 1995. Swimming of Daphnia galeata × hyalina in response to changing light intensities: influence of food availability and predator kairomone. Mar. Freshwat. Behav. Physiol. 26: 259-265.Google Scholar
  199. van Gool, E. & J. Ringelberg, 1997. The effect of accelerations in light increase on the phototactic downward swimming of Daphnia and the relevance to diel vertical migration. J. Plankton Res. 19: 2041-2050.Google Scholar
  200. van Gool, E. & J. Ringelberg, 1998a. Light-induced migration behaviour of Daphnia modified by food and predator kairomones. Anim. Behav. 3: 741-747.Google Scholar
  201. van Gool, E. & J. Ringelberg, 1998b. Quantitative effects of fish kairomones and successive light stimuli on downward swimming responses of Daphnia. Aquat. Ecol. 32: 291-296.Google Scholar
  202. van Gool, E. & J. Ringelberg, 1999. Estimates of effective kairomone concentration in the field may predict diel vertical migration. Abstract ASLO Conference Feb. 1-5 Santa Fe: 183.Google Scholar
  203. von Elert, E. & A. Franck, 1999. Colony formation in Scenedesmus: grazer-mediated release and chemical features of the infochemical. J. Plankton Res. 21: 789-804.Google Scholar
  204. von Elert, E. & C. J. Loose, 1996. Predator-induced diel vertical migration in Daphnia - enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22: 885-895.Google Scholar
  205. von Elert, E. & G. Pohnert, 2000. Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88: 119-128.Google Scholar
  206. Washburn, J. O., M. E. Gross, D. R. Mercer & J. R. Anderson, 1988. Predator-induced trophic shift of a free-living ciliate: parasitism of mosquito larvae by their prey. Science 240: 1193-1195.PubMedGoogle Scholar
  207. Watt, P. J. & S. Young, 1992. Genetic control of predator avoidance behaviour in Daphnia. Freshwat. Biol. 28: 363-367.Google Scholar
  208. Watt, P. J. & S. Young, 1994. Effect of predator chemical cues on Daphnia behaviour in both horizontal and vertical planes. Anim. Behav. 48: 861-869.Google Scholar
  209. Weber, A., 1999. The importance of infochemicals and clonespecific phenotypic plasticity in Daphnia ecology. PhD Thesis. University of Utrecht, Utrecht, The Netherlands: 165 pp.Google Scholar
  210. Weber, A. & S. Declerck, 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia 360: 89-99.Google Scholar
  211. Weider, L. J. & J. Pijanowska, 1993. Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67: 385-392.Google Scholar
  212. Wicklow, B. J., 1997. Signal-induced defensive phenotypic changes in ciliated protists: morphological and ecological implications for predator and prey. J. Eukar. Microbiol. 44: 176-188.Google Scholar
  213. Wiltshire, K. H. & W. Lampert, 1999. Urea excretion by Daphnia: a colony-inducing factor in Scenedesmus? Limnol. Oceanogr. 44: 1894-1903.Google Scholar
  214. Wolf, H. G., 1987. Interspecific hybridization between Daphnia hyalina, D. galeata and D. cucullata and seasonal abundance of these species and their hybrids. Hydrobiologia 145: 213-217.Google Scholar
  215. Young, S. & V. A. Taylor, 1990. Swimming tracks in swarms of two cladocera species. Anim. Behav. 39: 10-16.Google Scholar
  216. Young, S. & P. Watt, 1993. Behavioral mechanisms controlling vertical migration in Daphnia. Limnol. Oceanogr. 38: 70-79.Google Scholar
  217. Young, S. & P. J. Watt, 1994. Behavioural and genetic differences in populations of Daphnia subjected to different levels of predation. Freshwat. Biol. 32: 479-487.Google Scholar
  218. Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804-813.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sandra Lass
    • 1
  • Piet Spaak
    • 1
  1. 1.Department of Limnology, EAWAG/ETHDübendorfSwitzerland

Personalised recommendations