Journal of Nanoparticle Research

, Volume 5, Issue 1–2, pp 17–30 | Cite as

Fabrication of Nanomaterials Using Porous Alumina Templates

  • Shoso Shingubara


Nanofabrication by self-organization methods has attracted much attention owing to the fact that it enables mass production without the use of expensive lithographical tools, such as an electron beam exposure system. Porous alumina can be fabricated electrochemically through anodic oxidation of aluminum by means of such a self-organization method, yielding highly ordered arrays of nanoholes several hundreds down to several tens of nanometers in size. This paper is an overview of recent research on porous alumina science and technology, nanohole array self-organization conditions and mechanisms, various methods of nanostructure formation using porous alumina templates, optical and magnetic nanofabrication, perspectives on electronic nano device fabrication and chemical/biological sensors and membranes.

porous alumina anodic oxidation quantum dot nanorod photoluminescence magnetic storage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asada T., 1969. Japanese Patent. No. 824505.Google Scholar
  2. Asoh H., K. Nishio, M. Nakao, A. Yokoo, T. Tamamura & H. Masuda, 2001. Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid. J. Vac. Sci. Technol. B19, 569.Google Scholar
  3. Bandyopadhyay S., 2001. A nanospintronic universal quantum gate. Physica E 11, 126.Google Scholar
  4. Basu S., S. Chatterjee, M. Saha, S. Bandyopadhyay, K.K. Mistry & K. Sengupta, 2001. Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases. Sensors and Actuators, B-Chemical 79, 182.Google Scholar
  5. Bluhm E.A., E. Bauer, R.M. Chamberlin, K.D. Abney, J.S. Young & G.D. Jarvinen, 1999. Surface effects on cation transport across porous alumina membranes. Langmuir 15, 8668.Google Scholar
  6. Cao H.Q., Y. Xu, J.M. Hong, H.B. Liu, G. Yin, B.L. Li, C.Y. Tie & Z. Xu, 2001a. Sol¶ gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater. 13, 1393.Google Scholar
  7. Cao H.Q., Z. Xu, X.W. Wei, X. Ma & Z.L. Xue, 2001b. Sol¶ gel synthesis of an array of C-70 single crystal nanowires in a porous alumina template. Chem. Commun. 6, 541.Google Scholar
  8. Chen L., A.J. Yin, J.S. Im, A.V. Nurmikko, J.M. Xu & J. Han, 2001. Fabrication of 50¶ 100 nm patterned InGaN blue light emitting heterostructures. Physica Status Solidi A 188, 135.Google Scholar
  9. Cheng G.S., L.D. Zhang, X.G. Zhu, S.H. Chen, Y. Li, Y. Zhu & G.T. Fei, 1999. Synthesis of orderly nanostructure of crystalline GaN nanoparticles on anodic porous alumina membrane. Nanostruct. Mater. 11, 421.Google Scholar
  10. Cheng B. & E.T. Samulski, 2001. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 11, 2901.Google Scholar
  11. Chu S.Z., K. Wada, S. Inoue & S. Todoroki, 2002. Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. J. Electrochem. Soc. 149, B321.Google Scholar
  12. Crouse D., Y.-H. Lo, A.E. Miller & M. Crouse, 2000. Selfordered pore structure of anodized alumina on silicon and pattern transfer. Appl. Phys. Lett. 76, 49.Google Scholar
  13. Du Y., W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang & X.G. Zhu, 1999. Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74, 2951.Google Scholar
  14. Fernandes N.E., S.M. Fisher, J.C. Poshusta, D.G. Vlachos, M. Tsapatsis & J.J. Watkins, 2001. Reactive deposition of metal thin films within porous supports from supercritical fluids. Chem. Mater. 13, 2023.Google Scholar
  15. Gaponenko N.V., J.A. Davidson, B. Hamilton, P. Skeldon, G.E. Thompson, X. Zhou & J.C. Pivin, 2000. Strongly enhanced Tb luminescence from titania zerogel solids mesoscopically confined in porous anodic alumina. Appl. Phys. Lett. 76, 1006.Google Scholar
  16. Gaponenko N.V., O.V. Sergeeve, E.A. Stepanova, V.M. Parkun, A.V. Mudryi, H. Gnaser, J. Misiew, L.J. Balk & G.E. Thompson, 2001. Optical and structural characterization of erbium-doped TiO2 xerogel films processe on porous anodic alumina. J. Electrochem. Soc. 148, H13.Google Scholar
  17. Govyadinoc A.N. & S.A. Zakhvitcevich, 1999. Field emitter arrays based on natural self-organized porous anodic alumina. J. Vac. Sci. Technol. B16, 1222.Google Scholar
  18. Gphausen H.J. & G.C. Schoener, 1984. Plating and Surf. Finishing 71, 56.Google Scholar
  19. Haruyama J. & Y. Sato, 2000, Influence of phase fluctuation in external environment on coulomb blockade an array system of single tunnel junctions/Ni nanowires. Appl. Phys. Lett. 76, 1698.Google Scholar
  20. Haruyama J., K. Hijioka, M. Tako & Y. Sato, 2000. Coulomb blockade related to mutual coulomb interaction in an external environment in an array of single tunnel junctions connected to Ni nanowires. Phys. Rev. B. 62, 8420.Google Scholar
  21. Haruyama J., I. Takesue, S. Kato, K. Takazawa & Y. Sato, 2001a. Mesoscopic phenomena in nano-porous alumina films: single nano-tunnel junctions connected to Ni-nanowires and carbon nanotubes. Appl. Surf. Sci. 175¶ 176, 597.Google Scholar
  22. Haruyama J., I. Takesue, T. Hasegawa & Y. Sato, 2001b. Coulomb blockade related to a localization effect in a single tunnel-junction/carbon-nanotube system. Phys. Rev. B 63, 073406.Google Scholar
  23. Haruyama J., I. Takesue & T. Hasegawa, 2001c. Drastic change of phase interference by small diffusion of heavy-mass electrode atoms in carbon nanotubes and phase switching device. Appl. Phys. Lett. 79, 269.Google Scholar
  24. Haruyama J., I. Takesue & T. Hasegawa, 2002. Anomalous localization effects associated with excess volume of cobalt catalyst in multiwalled nanotubes. Appl. Phys. Lett. 81, 3031.Google Scholar
  25. Hoar T.P. & N.F. Mott, 1959. A mechanism for the formation of porous anodic oxide films on aluminium. J. Phys. Chem Solids 9, 97.Google Scholar
  26. Hu W.C., L.M. Yuan, Z. Chen, D.W. Gong & K. Saito, 2002. Fabrication and characterization of vertically aligned carbon nanotubes on silicon substrates using porous alumina nanotemplate. J. Nanosci. Nanotechnol. 2, 203.Google Scholar
  27. Hu W., D. Gong, Z. Chen, C.A. Grimes & P. Kichambare, 2001. Growth of well-aligned carbon naotube arrays on silicon substrates using porous alumina film as a nanotemplate. Appl. Phys. Lett. 79, 3083.Google Scholar
  28. Imai H., Y. Takei, K. Shimizu, M. Matsuda & H. Hirashima, 1999. Direct preparation of anatase TiO2 nanotube in porous alumina membranes. J. Mater. Chem. 9, 2971.Google Scholar
  29. Iwasaki T., Y. Motoi & T. Den, 1999. Multiwalled carbon nanotubes growth in anodic alumina nanoholes. Appl. Phys. Lett. 75, 2044.Google Scholar
  30. Jessensky O., F. Muller & U. Gosele, 1998a. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173.Google Scholar
  31. Jessensky O., F. Muller & U. Gosele, 1998b. Self-organized formation of hexagonal pore structures in anodic alumina. J. Electrochem. Soc. 145, 3735.Google Scholar
  32. Kawai S. & I. Ishiguro, 1975. Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited Co and Co¶ Ni. J. Electrochem. Soc. 122, 32.Google Scholar
  33. Kawai S. & I. Ishiguro, 1976. Recording characteristics of anodic oxide films on aluminum containing electrodeposited ferromagnetic metals and alloys. J. Electrochem. Soc. 123, 1047.Google Scholar
  34. Keller F., M.S. Hunter & D.L. Robinson, 1953. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411.Google Scholar
  35. Kouklin N., S. Bandyopadhyay, S. Teresin, A. Varfolomeev & D. Zaretsky, 2000. Electronic bistability in electrochemically self-assembled quantum dots: A potential nonvolatile random access memory. Appl. Phys. Lett. 76, 460.Google Scholar
  36. Kouklin N., L. Menon, A.Z. Wong, D.W. Thompson, J.A. Woollam, P.F. Williams & S. Bandyopadhyay, 2001. Giant photoresistivity and optically controlled switching in self-assembled nanowires. Appl. Phys. Lett. 79, 4423.Google Scholar
  37. Kroll M., L.J. de Jongh, F. Luis, P. Paulus & G. Schmid, 2001. Magnetization reversal and magnetic anisotropy of Fe, Ni and Co nanowires in nanoporous alumina membranes. Mat. Res. Soc. Symp. Proc. 674., U4.5.1.Google Scholar
  38. Kukhta A.V., G.G. Gorokh, E.E. Kolesnik, A.I. Mitkovets, M.I. Taoubi, Y.A. Koshin & A.M. Mozalev, 2002. Nanostructured alumina as a cathode of organic light-emitting devices. Surf. Sci. 507, 593.Google Scholar
  39. Lazarouk S., S. Katsouba, A. Demianovich, V. Stanovski, S. Voitech, V. Vysotski & V. Ponomar, 2000a. Reliability of built in aluminum interconnection with low-epsilon dielectric based on porous anodic alumina. Solid State Electron. 44, 815.Google Scholar
  40. Lazarouk S., S. Katsouba, A. Leshok, A. Demianovich, V. Stanovski, S. Voitech, V. Vysotski & V. Ponomar, 2000b. Porous alumina as low-epsilon insulator for multilevel metallization. Microelectron. Eng. 50, 321.Google Scholar
  41. Li J., C. Papadopoulos & J.M. Xu, 1999a. Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett. 75, 367.Google Scholar
  42. Li J., C. Papadopoulos & J. Xu, 1999b. Growing Y-junction Carbon Nanotubes. Nature 402, 253.Google Scholar
  43. Liang J., H. Chik, A. Yun & J. Xu, 2002. Two-dimensional lateral superlattices on anostructures: Nonlithographic formation by anodic membrane template. J. Appl. Phys. 91, 2544.Google Scholar
  44. Masuda H. & K. Fukuda, 1995. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466.Google Scholar
  45. Masuda H., F. Hasegawa & S. Ono, 1997. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127.Google Scholar
  46. Masuda H., H. Yamada, M. Saitoh, H. Asoh, M. Nakao & T. Tamamura, 1997. Highly ordered nanochannel-array architecture in anodic aloumina. Appl. Phys. Lett. 71, 2770.Google Scholar
  47. Masuda H., K. Yada & A. Osaka, 1998. Self-ordering of cell configuration of anodic porous aloumina with large-size pores in phosphorous acid solution. Jpn. J. Appl. Phys. 37, L1340.Google Scholar
  48. Masuda H., M. Ohya, H. Asoh, M. Nakao, M. Nohtomi & T. Tamamura, 1999. Photonic crystal using anodic porous alumina, Jpn. J. Appl. Phys. Part2-Lett. 38, L1403.Google Scholar
  49. Masuda H., M. Ohya, H. Asoh & K. Nishio, 2001. Photonic band gap in naturally occurring ordered anodic porous alumina. Jpn. J. Appl. Phys. 40, L1217.Google Scholar
  50. Menon L., M. Zheng, H. Zeng, S. Bandyopadhyay & D.J. Sellmyer, 2000. Size dependence of the magnetic properties of electrochemically self-assembled Fe quantum dots. J. Electron. Mater. 29, 510.Google Scholar
  51. Menon L., S. Bandyopadhyay, Y. Liu, H. Zeng & D.J. Sellmyer, 2001. Magnetic and structural properties of electrochemically self-assembled Fe1-xCox nanowires. J. Nanosci. Nanotechnol. 1, 149.Google Scholar
  52. Metzger R.M., M. Sun, G. Zangari & M. Shamsuzzoha, 2001. Magnetic nanoparticle array with ultra-uniform length electrodeposited in highly ordered alumina nanopores ('alumite'). Mat. Res. Soc. Symp. Proc. 636, D.9.33.1.Google Scholar
  53. Mikulskas I., S. Juodkazis, R. Tomasiunas & J. G. Dumas, 2001. Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574.Google Scholar
  54. Mozalev A., S. Magaino & H. Imai, 2001. The formation of nanoporous membranes from anodically oxidized aluminium and their application to Li rechargeable batteries. Electrochim. Acta 46, 2825.Google Scholar
  55. Nakao M., S. Oku, T. Tamamura, K. Yasui & H. Masuda, 1999. GaAs and InP nanohole arrays fabricated by reactive beam etching using highly ordered alumina membrane. Jpn. J. Appl. Phys. 38, 1052.Google Scholar
  56. Nielsch K., F. Muller, A.P. Li & U. Gosele, 2000. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582.Google Scholar
  57. Nielsch K., J. Choi, K. Schwirn, R.B. Wehrspohn & U. Gosele, 2002a. Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677.Google Scholar
  58. Nielsch K., R. Hertel, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer & H. Kronmuller, 2002b. Switching behavior of single nanowires inside dense nickel nanowire arrays. IEEE Trans. Magn. 38, 2571.Google Scholar
  59. O'sullivan J.P. & G.C. Wood, 1970. Nucleation and growth of porous anodic films on aluminum. Proc. R. Soc. A317, 511.Google Scholar
  60. Papadopoulos C., A. Rakitin, J. Li, A.S. Vedeneev & J.M. Xu, 2000. Electronic transport in y-junction carbon nanotubes. Phys. Rev. Lett. 85, 3476.Google Scholar
  61. Routkevitch D., A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits & J.M. Xu, 1996. Nonlithographic nano-wire arrays: Fabrication, physics, and device application. IEEE Trans. Electron Devices 43, 1646.Google Scholar
  62. Sauer G., G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister & U. Gosele, 2002. Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243.Google Scholar
  63. Schwartz G.C. & V. Platter, 1975. An anodic process for forming planar interconnection metallization for multilevel LSI. J. Electrochem. Soc. 122, 1508.Google Scholar
  64. Shawaqfeh A.T. & R.E. Baltus, 1999. Fabrication and characterization of single layer and multi-layer anodic alumina membrane. J. Membrane Sci. 157, 147.Google Scholar
  65. Shi G., C.M. Mo, W.L. Cai & L.D. Zhang, 2000. Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays. Solid State Comm. 115, 253.Google Scholar
  66. Shingubara S., O. Okino., H. Sakaue & T. Takahagi, 1997. Ordered two-dimensional nanowire array formation using selforganized nanoholes of anodically oxidized aluminum. Jpn. J. Appl. Phys. 36, 7791.Google Scholar
  67. Shingubara S., O. Okino, Y. Sayama, H. Sakaue & T. Takahagi, 1999. Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum. Solid State Electron 43, 1143.Google Scholar
  68. Shingubara S., O. Okino, Y. Murakami, H. Sakaue & T. Takahagi, 2001. Fabrication of nanohole array on Si using self-organized porous alumnina mask. J. Vac. Sci. Technol. B19, 1901.Google Scholar
  69. Shingubara S., Y. Murakami, K. Morimoto, H. Sakaue & T. Takahagi, 2002a. Formation of Al nanodot array by the combination of nano-indentation and anodic oxidation. Mat. Res. Soc. Symp. Proc. 705, 133.Google Scholar
  70. Shingubara S., Y. Murakami, H. Sakaue & T. Takahagi, 2002b. Formation of Al dot hexagonal array on Si using anodic oxidation and selective etching. Jpn. J. Appl. Phys. 41, L340.Google Scholar
  71. Shingubara S., Y. Murakami, K. Morimoto, G.R. Wu & T. Takahagi, 2002c. Aluminum nanodot array formation by anodic oxidation and its conduction properties. Extended Abst. 2002 Solid State Devices Mater. p. 266.Google Scholar
  72. Shingubara S., Y. Murakami, K. Morimoto & T. Takahagi, 2003. Formation of aluminum dot array by combination of nanoindentation and anodic oxidation of aluminium. Surface Science (in press).Google Scholar
  73. Sui Y.C., B.Z. Cui, R. Guardian, D.R. Acosta, L. Martinez & R. Perez, 2002. Growth of carbon nanotubes and nanofibres in porous anodic alumina film. Carbon 40, 1011.Google Scholar
  74. Strijkers G.J., J.H.J. Dalderop, M.A.A. Broeksteeg, H.J.M. Swagten, & W.J.M. de Jonge, 1999. Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina. J. Appl. Phys. 86, 5141.Google Scholar
  75. Sun S., D. Weller & C.B. Murray, 2001. In: Plumer M.L., Ek J.v. and Weller D. eds. The Physics of Ultra-High-Density Magnetic Recording, Springer, New York, pp. 249–276.Google Scholar
  76. Sun M., G. Zangari & R.M. Metzger, 2000. Cobalt island arrays with in-plane anisotropy electrodeposited in highly ordered alumite. IEEE Trans. Magn. 36, 3005.Google Scholar
  77. Sun M., G. Zangari, M. Shamsuzzoha & M. Metzger, 2001. Electrodeposition of highly uniform magneticnanoparticle arrays in ordered alumite. Appl. Phys. Lett. 78, 2964.Google Scholar
  78. Sung S.L., S.H. Tsai, C.H. Tseng, F.K. Chiang, X.W. Liu & H.C. Shih, 1999. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett. 74, 197.Google Scholar
  79. Thompson G.E., R.C. Furneaux, G.C. Wood, J.A. Richardson & J.S. Goode, 1978. Nucleation and growth of porous anodic films on aluminum. Nature 272, 433.Google Scholar
  80. Wang Y.H., Y.Q. Xu, W.L. Cai & J.M. Mo, 2002. New method to prepare CdS nanowire arrays. Acta Physico-Chim. Sinica 18, 943.Google Scholar
  81. Wang X.H., Z. Hu, Q. Wu & Y. Chen, 2002. Low-temperature catalytic growth of carbon nanotubes under microwave plasma assistance. Catalysis Today 72, 205.Google Scholar
  82. Wehrspohn R.B. & J. Schilling, 2001. Electrochemically prepared pore arrays for photonic-crystal applications. MRS Bull. 26, 623.Google Scholar
  83. Xu C.X., Q.H. Xue, Y. Zhong, Y.P. Cui, L. Ba, B. Zhao & N. Gu, 2002. Photoluminescent blue-shift of organic molecules in nanometre pores. Nanotechnology 13, 47.Google Scholar
  84. Zeng H., S. Michalski, R.D. Kirby, D.J. Sellmyer, L. Menon & S. Bandyopadhyay, 2002. Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina, J. Phys. Cond. Matter. 14, 715.Google Scholar
  85. Zheng M., L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R.D. Kirby & D.J. Sellmyer, 2000. Magnetic properties of Ni nanowires in self-assembled arrays. Phys. Rev. B 62, 12282.Google Scholar
  86. Zhu H., S.G. Yang, G. Ni, D.L. Yu & Y.W. Du, 2001. Fabrication and magnetic properties of Co67Ni33 alloy nanowire array. Scripta Mater. 44, 2291.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Shoso Shingubara
    • 1
  1. 1.Gdraduate School of Advanced Sciences of MattersHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations