Russian Chemical Bulletin

, Volume 52, Issue 4, pp 831–836 | Cite as

Structure and vibrational spectra of dicyclopentadienylzinc. A DFT study

  • B. V. Lokshin
  • O. G. Garkusha
  • Yu. A. Borisov
  • N. E. Borisova


The quantum-chemical DFT calculations of the Cp2Zn structure confirm the conclusion made earlier from the vibrational spectra that the sandwich structure (η5-C5H5)2Zn (A) is not energetically favorable and more favorable are the close in energy πσ-structure (η5-C5H5)(η1-C5H5)Zn (B) and σ-structure (η1-C5H5)2Zn (C). The vibrational spectra of structures B and C with the DFT-derived force fields were calculated. A comparison of the calculated spectra of the isolated Cp2Zn molecules with the experimental data gives no way of deciding between the B and C structures. It is most likely that the molecule is nonrigid and experiences a strong influence from the nearest environment in solution or in the crystalline state.

dicyclopentadienylzinc molecular structure vibrational spectra density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. T. Aleksanyan and B. V. Lokshin, Kolebatel´nye spektry π-kompleksov perekhodnykh elementov, Itogi nauki i tekhniki, Stroenie molekul i khimicheskaya svyaz´ [Vibrational Spectra of π-Complexes of Transition Elements, Results of Science and Technology, Structure of Molecules and Chemical Bond], VINITI, Moscow, 1976, 5, 178 pp. (in Russian).Google Scholar
  2. 2.
    V. T. Aleksanyan, in Vibrational Spectra and Structure, A Series of Advances, Ed. J. R. Durig, Elsevier, Amsterdam, 1982, 11, 107.Google Scholar
  3. 3.
    К. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1986.Google Scholar
  4. 4.
    E. Maslovsky, Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, 528 pp.Google Scholar
  5. 5.
    H. P. Fritz, Adv. Organomet. Chem., 1964, 1, 239.Google Scholar
  6. 6.
    E. O. Fischer, H. P. Hoffmann, and A. Treiber, Z. Naturforsch., 1969, 14, 599.Google Scholar
  7. 7.
    J. Lorberth, J. Organomet. Chem., 1969, 19, 189.Google Scholar
  8. 8.
    J. M. Burlith, in Comprehensive Organometallic Chemistry, Ed. G. Wilkinson, Pergamon, Oxford, 1982, 6, 1002.Google Scholar
  9. 9.
    P. H. M. Budzelaar, J. Boersma, and G. J. M. van der Kerk, J. Organomet. Chem., 1985, 281, 123.Google Scholar
  10. 10.
    A. Haaland, S. Samdal, and R. Seip, J. Organomet. Chem., 1978, 153, 187.Google Scholar
  11. 11.
    Т. Aoyagi, H. M. M. Shearer, К. Wade, and G. Whitehead, J. Organomet. Chem., 1978, 146, C29.Google Scholar
  12. 12.
    O. G. Garkusha, B. V. Lokshin, and G. K. Borisov, J. Organomet. Chem., 1998, 53, 59.Google Scholar
  13. 13.
    R. Blom, A. Haaland, and J. Weidlein, J. Chem. Soc., Chem. Commun., 1985, 266.Google Scholar
  14. 14.
    R. Blom, J. Boersma, P. H. M. Budzelaar, B. Fischer, A. Haaland, H. V. Volden, and J. Weidlein, Acta Chem Scand., Ser. A, 1986, 40, 113.Google Scholar
  15. 15.
    B. Fisher, P. Wijkens, J. Boersma, G. van Koten, W. J. J. Smeets, A. L. Spec, and P. H. M. Budzelaar, J. Organomet. Chem., 1989, 386, 223.Google Scholar
  16. 16.
    A. Berces, T. Ziegler, and L. Fan, J. Phys Chem., 1994, 98, 1584.Google Scholar
  17. 17.
    A. Berces and T. Ziegler, Topics in Current Chemistry, 182, Density Functional Theory III. Interpretation, Atoms, Molecules and Clusters, Ed. R. F. Nalewajski, Springer, Berlin-Heidelberg, 1996, 42.Google Scholar
  18. 18.
    B. V. Lokshin, N. E. Borisova, V. M. Senyavin, and M. D. Reshetova, Izv. Akad. Nauk, Ser. Khim., 2002, 1521 [Russ Chem. Bull., Int Ed., 2002, 51, 1656].Google Scholar
  19. 19.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Revision A.9, Gaussian, Inc., Pittsburgh (PA), 1998.Google Scholar
  20. 20.
    P. J. Hay and W. R. Wardt, J. Chem. Phys, 1985, 82, 270.Google Scholar
  21. 21.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.Google Scholar
  22. 22.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.Google Scholar
  23. 23.
    M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029.Google Scholar
  24. 24.
    V. A. Sipachev, J. Mol. Struct. (THEOCHEM), 1985, 121, 143.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • B. V. Lokshin
    • 1
  • O. G. Garkusha
    • 1
  • Yu. A. Borisov
    • 1
  • N. E. Borisova
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie GoryMoscowRussian Federation

Personalised recommendations