Advertisement

Journal of Computational Neuroscience

, Volume 15, Issue 1, pp 71–90 | Cite as

Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics

  • Corey D. Acker
  • Nancy Kopell
  • John A. White
Article

Abstract

Behavior of a network of neurons is closely tied to the properties of the individual neurons. We study this relationship in models of layer II stellate cells (SCs) of the medial entorhinal cortex. SCs are thought to contribute to the mammalian theta rhythm (4–12 Hz), and are notable for the slow ionic conductances that constrain them to fire at rates within this frequency range. We apply “spike time response” (STR) methods, in which the effects of synaptic perturbations on the timing of subsequent spikes are used to predict how these neurons may synchronize at theta frequencies. Predictions from STR methods are verified using network simulations. Slow conductances often make small inputs “effectively large”; we suggest that this is due to reduced attractiveness or stability of the spiking limit cycle. When inputs are (effectively) large, changes in firing times depend nonlinearly on synaptic strength. One consequence of nonlinearityis to make a periodically firing model skip one or more beats, often leading to the elimination of the anti-synchronous state in bistable models. Biologically realistic membrane noise makes such “cycle skipping” more prevalent, and thus can eradicate bistability. Membrane noise also supports “sparse synchrony,” a phenomenon in which subthreshold behavior is uncorrelated, but there are brief periods of synchronous spiking.

synchrony phase response theta rhythm cycle skipping membrane noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker CD, Kopell N, White JA (2001) Synchronization of strongly coupled excitatory neurons: Relating biophysics to network behavior. In: Fifth International Conference on Cognitive and Neural Systems. Boston, MA.Google Scholar
  2. Alligood K, Sauer T, Yorke J (1997) Chaos-an introduction to dynamical systems. Springer-Verlag, New York.Google Scholar
  3. Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J. Neurophysiol. 70: 128-143.PubMedGoogle Scholar
  4. Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342: 175-177.CrossRefPubMedGoogle Scholar
  5. Canavier CC, Butera RJ, Dror RO, Baxter DA, Clark JW, Byrne JH (1997) Phase response characteristics of model neurons determine which patterns are expressed in a ring circuit model of gait generation. Biological Cybernetics 77: 367-380.CrossRefPubMedGoogle Scholar
  6. Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput. 12: 1643-1678.CrossRefPubMedGoogle Scholar
  7. Chrobak JJ, Lorincz A, Buzsaki G (2000) Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus 10: 457-465.CrossRefPubMedGoogle Scholar
  8. Crook SM, Ermentrout GB, Bower JM (1998) Spike frequency adaptation affects the synchronization properties of networks of cortical oscillations. Neural Comput. 10: 837-854.CrossRefPubMedGoogle Scholar
  9. Destexhe A, Mainen ZF, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation 6: 14-18.Google Scholar
  10. Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge, MA. pp. 1-26.Google Scholar
  11. Dhillon A, Jones RS (2000) Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience 99: 413-422.CrossRefPubMedGoogle Scholar
  12. Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of I (h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol 83: 2562-2579.PubMedGoogle Scholar
  13. Dorval AD, Christini DJ, White JA (2001) Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells. Ann. Biomed. Eng. 29: 897-907.CrossRefPubMedGoogle Scholar
  14. Eder C, Ficker E, Göndel J, Heinemann U (1991) Outward currents in rat entorhinal cortex stellate cells studied with conventional and perforated patch recordings. Eur. J. Neurosci. 3: 1271-1280.PubMedGoogle Scholar
  15. Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8: 979-1001.PubMedGoogle Scholar
  16. Ermentrout B (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Ist edn. Society for Industrial & Applied Mathematics.Google Scholar
  17. Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J. Math. Biol. 29: 195-217.Google Scholar
  18. Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. USA 95: 1259-1264.CrossRefPubMedGoogle Scholar
  19. Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput. 13: 1285-1310.CrossRefPubMedGoogle Scholar
  20. Farmer SF (1998) Rhythmicity, synchronization and binding in human and primate motor systems. J. Physiol. 509: 3-14.CrossRefPubMedGoogle Scholar
  21. Fransén E, Alonso A, Dickson C, Magistretti J, Hasselmo ME (2003) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Submitted.Google Scholar
  22. Gerstner W (2001) A framework for spiking neuron models: The spike response model. In: F Moss, S Gielen, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 469-516.Google Scholar
  23. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81: 2340-2361.Google Scholar
  24. Gloor P (1997) The Temporal Lobe and Limbic System. Oxford University Press, New York.Google Scholar
  25. Golomb D, Hansel D, Mato G (2001) Mechanisms of synchrony of neural activity in large networks. In: F Moss, S Gielen, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 469-516.Google Scholar
  26. Golomb D, Rinzel J (1993) Dynamics of globally coupled inhibitory neurons with heterogeneity. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 48: 4810-4814.Google Scholar
  27. Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol 72: 1109-1126.PubMedGoogle Scholar
  28. Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31-47, 111-125.CrossRefPubMedGoogle Scholar
  29. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York.Google Scholar
  30. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput. 7: 307-337.PubMedGoogle Scholar
  31. Hasselmo ME, Fransen E, Dickson C, Alonso AA (2000) Computational modeling of entorhinal cortex. Ann. NY Acad. Sci. 911: 418-446.PubMedGoogle Scholar
  32. Jones SR, Pinto DJ, Kaper TJ, Kopell N (2000) Alpha-frequency rhythms desynchronize over long cortical distances: A modeling study. J. Comput. Neurosci. 9: 271-291.CrossRefPubMedGoogle Scholar
  33. Kistler WM, Gerstner W, van Hemmen LJ (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9: 1015-1045.Google Scholar
  34. Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J. Neurophysiol. 70: 144-157.PubMedGoogle Scholar
  35. Kopell N (1988) Toward a theory of modelling central pattern generators. In: AH Cohen, S Rossignol, S Grillner, eds. Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York. pp. 369-413.Google Scholar
  36. Kopell N, Ermentrout GB (2001) Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In: B Fiedler, ed. Handbook on Dynamical Systems, Vol. 2, Toward Applications. Elsevier.Google Scholar
  37. Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 97: 1867-1872.CrossRefPubMedGoogle Scholar
  38. Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput. 8: 501-509.PubMedGoogle Scholar
  39. Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66: 1059-1079.PubMedGoogle Scholar
  40. Neltner L, Hansel D (2001) On synchrony of weakly coupled neurons at low firing rate. Neural Comput. 13: 765-774.CrossRefPubMedGoogle Scholar
  41. O’Keefe J (1993) Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 3: 917-924.Google Scholar
  42. Pape HC (1996) Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58: 299-327.CrossRefPubMedGoogle Scholar
  43. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, UK.Google Scholar
  44. Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69: 1661-1672.PubMedGoogle Scholar
  45. Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49: 157-165.CrossRefPubMedGoogle Scholar
  46. Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: Artificial conductances in biological neurons. Trends Neurosci. 16: 389-394.CrossRefPubMedGoogle Scholar
  47. Singer W (1999) Neuronal synchrony: A versatile code for the definition of relations? Neuron 24: 49-65, 111-125.CrossRefPubMedGoogle Scholar
  48. Tiesinga PH, Jose JV (2000) Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network 11: 1-23.PubMedGoogle Scholar
  49. Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1: 313-321.PubMedGoogle Scholar
  50. Wang XJ, Rinzel J (1993) Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons. Neuroscience 53: 899-904.CrossRefPubMedGoogle Scholar
  51. White JA, Budde T, Kay AR (1995) A bifurcation analysis of neuronal subthreshold oscillations. Biophys. J. 69: 1203-1217.PubMedGoogle Scholar
  52. White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998b) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5: 5-16.CrossRefPubMedGoogle Scholar
  53. White JA, Haas JS (2001) Intrinsic noise from voltage-gated ion channels: Effects on dynamics and reliability in itrinsically oscillatory neurons. In: Moss F, Gielen S, eds. Neuro-Informatics and Neural Modelling. Elsevier Science B.V. pp. 257-278.Google Scholar
  54. White JA, Klink R, Alonso A, Kay AR (1998a) Noise from voltagegated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262-269.PubMedGoogle Scholar
  55. White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23: 131-137.CrossRefPubMedGoogle Scholar
  56. Winfree AT (2001) The geometry of biological time, 2 edn. Springer Verlag, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Corey D. Acker
    • 1
  • Nancy Kopell
    • 2
  • John A. White
    • 3
  1. 1.Department of Biomedical Engineering, Center for BioDynamicsBoston UniversityBostonUSA
  2. 2.Department of Mathematics, Center for BioDynamicsBoston UniversityBostonUSA
  3. 3.Department of Biomedical Engineering, Center for BioDynamics, Center for Memory and BrainBoston UniversityBostonUSA

Personalised recommendations