Journal of Materials Science

, Volume 38, Issue 13, pp 2815–2824 | Cite as

Characterisation of K, Na, and Li birnessites prepared by oxidation with H2O2 in a basic medium. Ion exchange properties and study of the calcined products


Birnessites containing Na, K or Li in the interlayer have been prepared by oxidation of Mn(II) cations with H2O2 in a basic medium with different alkaline cation/Mn molar ratios. The solids prepared have been characterised by elemental chemical analysis, powder X-ray diffraction, thermal analyses (differential thermal analysis and thermogravimetric analysis), FT-IR spectroscopy and surface texture assessment by adsorption of N2 at −196°C. Crystalline birnessites are obtained for A/Mn ratios (A = K, Li) larger than 3.4, but MnO(OH) has been also identificed when such a ratio is smaller than 3.4. Ion exchange is topotactic, but is not complete for exchanging Na, K, or Mg for pre-existing Li. The solids are stable up to 400°C, and formation of spinels and solids with tunnel structures is observed at this temperature. Li-containing birnessites are transformed to LiMn2O4 spinel at 400°C, and co-crystallization of bixbyte (Mn2O3) is observed at higher temperatures. Bixbyte and cryptomelane are formed at 500°C for the K-containing birnessites.


  1. 1.
    Q. Feng, H. Kanoh, Y. Mijay and K. Ooi, Chem. Mater. 7 (1995) 1226.Google Scholar
  2. 2.
    Idem., ibid. 7 (1995) 1722.Google Scholar
  3. 3.
    Q. Feng, K. Yanagisawa and N. Yamasaki, J. Chem. Soc., Chem. Comm. (1996) 1607.Google Scholar
  4. 4.
    Idem., J. Ceram. Soc. Jpn. 104 (1996) 897.Google Scholar
  5. 5.
    Q. Feng, E. H. Sun, K. Yanagisawa and N. Yamasaki, ibid. 105 (1997) 564.Google Scholar
  6. 6.
    Q. Feng, K. Yanagisawa and N. Yamasaki, J. Mater. Sci. Lett. 16 (1997) 110.Google Scholar
  7. 7.
    Idem., J. Porous Mater. 5 (1998) 153.Google Scholar
  8. 8.
    Q. Feng, H. Kanoh and K. Ooi, J. Mater. Chem. 9 (1999) 319.Google Scholar
  9. 9.
    S. Ching, D. J. Petrovay, M. L. Jorgensen and S. L. Suib, Inorg. Chem. 36 (1997) 883.Google Scholar
  10. 10.
    S. Ching, J. A. Landrigan, M. L. Jorgensen, N. Duan and S. L. Suib, Chem. Mater. 7 (1995) 1604.Google Scholar
  11. 11.
    S. Ching, S. Roark, J. L. Duan and S. L. Suib, ibid. 9 (1997) 750.Google Scholar
  12. 12.
    D. C. Golden, J. B. Dixon and C. C. Chen, Clays Clay Miner. 34 (1986) 511.Google Scholar
  13. 13.
    J. E. Post and D. R. Veblen, Amer. Mineral. 75 (1990) 477.Google Scholar
  14. 14.
    P. L. Goff, N. Baffier, S. Bach and J. P. P. Ramos, J. Mater. Chem. 4 (1994) 875.Google Scholar
  15. 15.
    P. L. Goff, N. Baffier, S. Bach, J. P. P. Ramos and R. Messina, Solid State Ionics 61 (1993) 309.Google Scholar
  16. 16.
    S. Hirano, R. Narita and S. Naka, Mater. Res. Bull. 19 (1984) 1229.Google Scholar
  17. 17.
    B. J. Aronson, A. K. Kinser, S. Passerini, W. H. Smyrl and A. Stein, Chem. Mater. 11 (1999) 949.Google Scholar
  18. 18.
    J. Luo, Q. Zhang, A. Huang, O. Giraldo and S. L. Suib, Inorg. Chem. 38 (1999) 6106.Google Scholar
  19. 19.
    S. Bach, J. P. Pereira-Ramos, N. Baffier and R. Messina, Electrochim. Acta 38 (1993) 1695.Google Scholar
  20. 20.
    Y. F. Shen, S. L. Suib and C. L. O'Young, J. Catal. 161 (1996) 115.Google Scholar
  21. 21.
    Y. K. Sun and S. H. Jin, J. Mater. Chem. 8 (1998) 2399.Google Scholar
  22. 22.
    J. R. Dahn, U. V. Sacken, M. W. Juzkow and H. Al-Janaby, J. Electrochem. Soc. 138 (1991) 2207.Google Scholar
  23. 23.
    A. R. Armstrong, H. Huang, R. A. Jennigs and P. G. Bruce, J. Mater. Chem. 8 (1998) 255.Google Scholar
  24. 24.
    M. H. Rossouw, D. C. Liles, M. M. Thackeray, W. I. F. David and S. Hull, Mater. Res. Bull. 27 (1992) 221.Google Scholar
  25. 25.
    R. N. Deguzman, Y. F. Shen, E. J. Neth, S. L. Suib, C. L. O'Young, S. Levine and J. M. Newsam, Chem. Mater. 6 (1994) 815.Google Scholar
  26. 26.
    D. C. Golden, C. C. Chen and J. B. Dixon, Science 231 (1986) 717.Google Scholar
  27. 27.
    S. L. Brock, N. Duan, Z. R. Tian, O. Giraldo, H. Zhou and S. L. Suib, Chem. Mater. 10 (1998) 2619.Google Scholar
  28. 28.
    JCPDS, Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, 1977, Pennsylvania, USA.Google Scholar
  29. 29.
    S. Lowell and J. E. Shields, “Powder Surface Area and Porosity” (Chapman and Hall, London, 1984).Google Scholar
  30. 30.
    V. Rives, Adsorption Sci. Technol. 8 (1991) 95.Google Scholar
  31. 31.
    O. Prieto, M. D. Arco and V. Rives, Thermochim. Acta 401 (2003) 95.Google Scholar
  32. 32.
    J. Luo, Q. Zhang and S. L. Suib, Inorg. Chem. 39 (2000) 741.Google Scholar
  33. 33.
    A. Blazek, “Thermal Analysis” (Van Nostrand Reinhold Company Ltd., London, 1973).Google Scholar
  34. 34.
    R. M. Potter and G. R. Rossman, Amer. Mineral. 64 (1979) 1199.Google Scholar
  35. 35.
    J. Luo, A. Huang, S. H. Park, S. L. Suib and C. L. O'Young, Chem. Mater. 10 (1998) 1561.Google Scholar
  36. 36.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603.Google Scholar
  37. 37.
    A. R. Paniego, An. Quim. 35 (1989) 386.Google Scholar
  38. 38.
    V. Rives, in “Layered Double Hydroxides: Present and Future,” edited by V. Rives (Nova. Sci. Pub., Inc., New York, 2001) p. 229.Google Scholar
  39. 39.
    O. Prieto, “Preparación, caracterización y evolución estructural con la calcinación de óxidos mixtos de manganeso,” Ph.D. thesis, Universidad de Salamanca, Spain, 2001.Google Scholar
  40. 40.
    R. Chen, P. Zavalij and M. S. Whittingham, Chem. Mater. 8 (1996) 1275.Google Scholar
  41. 41.
    S. Bach, J. P. Pereira-Ramos and N. Baffier, J. Solid State Chem. 120 (1995) 70.Google Scholar
  42. 42.
    J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P. Hagenmuller, ibid. 3 (1971) 1.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Departamento de Química InorgánicaUniversidad de SalamancaSalamancaSpain

Personalised recommendations