Pharmaceutical Research

, Volume 20, Issue 7, pp 1071–1084 | Cite as

Visualization of Insulin-Loaded Nanocapsules: In Vitro and in Vivo Studies After Oral Administration to Rats

  • Huguette Pinto-Alphandary
  • Malam Aboubakar
  • Danielle Jaillard
  • Patrick Couvreur
  • Christine Vauthier


Purpose. Biodegradable poly(isobutylcyanoacrylate) nanocapsules have been recognized as a promising carrier for oral administration of peptides and proteins. In the present study, we investigate the fate of insulin-loaded nanocapsules by fluorescence and transmission electron microscopy (TEM) after intragastric force-feeding to rats.

Methods. Insulin-, Texas-red®-labeled insulin, or gold-labeled insulin-loaded nanocapsules were first characterized. Rats received a single dose of nanocapsules (diameter 60-300 nm, 57 IU insulin/kg) by intragastric force-feeding. After 90 min, ileum was isolated and prepared for fluorescence and transmission electron microscopy.

Results. Nanocapsules were observed on both sides of the gut epithelium and in blood capillaries. In M-cell-free epithelium, apparently intact nanocapsules could be seen in the underlying tissue, suggesting they could cross the epithelium and carry the encapsulated peptide. In M-cell-containing epithelium, nanocapsules appeared degraded in the vicinity of macrophages. It is noteworthy that intestinal absorption of nanocapsules was observed without artifacts forcing the nanocapsules to stay in the gut.

Conclusions. Based on TEM observations, this study shows the intestinal absorption of biodegradable nanocapsules leading to the transport of insulin across the epithelium mucosa. The fate of the nanocapsules appeared different depending on the presence or the absence of M cells in the intestinal epithelium.

insulin nanocapsules poly(isobutylcyanoacrylate) oral delivery intestinal tract 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Leone-Bay, D. R. Paton, and J. J. Weidner. The development of delivery agents that facilitate the oral absorption of macromolecular drugs. Med. Res. Rev. 20:169–186 (2000).Google Scholar
  2. 2.
    I. Morishita, M. Morishita, K. Takayama, Y. Machida, and T. Nagai. Enteral insulin delivery by microspheres in three different formulations using Eudragit 1100 and S100. Int. J. Pharm. 91:29–37 (1993).Google Scholar
  3. 3.
    E. Mathiowitz, J. S. Jacob, Y. S. Jong, G. P. Carino, D. E. Chichering, P. Chaturverdi, C. A. Santos, K. Vijayaraghavan, S. Montgomery, M. Basset, and C. Morrel. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414 (1997).Google Scholar
  4. 4.
    G. Gwinup, A. N. Elias, and E. S. Domurat. Insulin and C-peptide levels following oral administration of insulin in intestinal-enzyme protected capsules. Gen. Pharm. 22:243–246 (1991).Google Scholar
  5. 5.
    N. Hussain, V. Jaitley, and A. T. Florence. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 50:107–142 (2001).Google Scholar
  6. 6.
    A. T. Florence. The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm. Res. 14:259–266 (1997).Google Scholar
  7. 7.
    F. Delie. Evaluation of nano-and microparticle uptake by the gastrointestinal tract. Adv. Drug. Deliv. Rev. 34:221–233 (1998).Google Scholar
  8. 8.
    D. T. O'Hagan. The intestinal uptake of particles and the implications for drug and antigen delivery. J. Anat. 189:477–482 (1996).Google Scholar
  9. 9.
    J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. Controlled vaccine release in the gut-associated lymphoid tissues. 1. Orally administered biodegradable microspheres target the Peyer's patches. J. Control. Release 11:205–214 (1990).Google Scholar
  10. 10.
    P. U. Jani, A. T. Florence, and D. E. McCarthy. Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int. J. Pharm. 84:245–252 (1992).Google Scholar
  11. 11.
    P. G. Jenkins, K. A. Howard, N. W. Blackhall, N. W. Thomas, S. S. Davis, and D. T. O'Hagan. Microparticulate absorption from the rat intestine. J. Control. Release 29:339–350 (1994).Google Scholar
  12. 12.
    P. U. Jani, D. E. McCarthy, and A. T. Florence. Nanosphere and microsphere uptake via Peyer's patches: observation on the rate of uptake in the rat after a single oral dose. Int. J. Pharm. 86:239–246 (1992).Google Scholar
  13. 13.
    A. M. Hillery, P. U. Jani, and A. T. Florence. Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J. Drug Target. 2:151–156 (1994).Google Scholar
  14. 14.
    M. Aprahamian, C. Michel, W. Humbert, J. P. Devissaguet, and C. Damgé. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine. Biol. Cell 61:69–76 (1987).Google Scholar
  15. 15.
    C. Damgé, C. Michel, M. Aprahamian, and P. Couvreur. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251 (1988).Google Scholar
  16. 16.
    C. Michel, M. Aprahamian, L. Defontaine, P. Couvreur, and C. Damgé. The effect of site of administration in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats. J. Pharm. Pharmacol. 43:1–5 (1991).Google Scholar
  17. 17.
    C. Damgé, D. Hillaire-Buys, R. Puech, A. Holizel, C. Michel, and G. Ribes. Effects of orally administered insulin nanocapsules in normal and diabetic dogs. Diab. Nutr. Metab. 8:3–9 (1995).Google Scholar
  18. 18.
    P. H. Lowe and C. S. Temple. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J. Pharm. Pharmacol. 46:547–552 (1994).Google Scholar
  19. 19.
    F. Cournarie, D. Auchere, D. Chevenne, B. Lacour, M. Seiller, and C. Vauthier. Absorption and efficiency of insulin after oral administration of insulin-loaded nanocapsules in diabetic rats. Int. J. Pharm. 242:325–328 (2002).Google Scholar
  20. 20.
    M. Aboubakar, F. Puisieux, P. Couvreur, and C. Vauthier. Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int. J. Pharm. 183:63–66 (1999).Google Scholar
  21. 21.
    M. Aboubakar, P. Couvreur, H. Pinto-Alphandary, B. Gouritin, B. Lacour, R. Farinotti, F. Puisieux, and C. Vauthier. Insulin-loaded nanocapsules for oral administration: in vitro and in vivo investigation. Drug Dev. Res. 49:109–117 (2000).Google Scholar
  22. 22.
    S. Mc Clean, E. Prosser, E. Meehan, D. O'Malley, N. Clarke, Z. Ramtoola, and D. Brayden. Binding and uptake of biodegradable poly-DL-lactide micro-and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6:153–163 (1998).Google Scholar
  23. 23.
    C. Damgé, C. Michel, M. Aprahamian, P. Couvreur, and J. P. Devissaguet. Nanocapsules as carriers for oral peptide delivery. J. Control. Release 13:233–239 (1990).Google Scholar
  24. 24.
    C. Damgé, M. Aprahamian, W. Humbert, and M. Pinget. Ileal uptake of polyalkyl-cyanoacrylate nanocapsules in the rat. J. Pharm. Pharmacol. 52:1049–1056 (2000).Google Scholar
  25. 25.
    L. Szentkuti. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J. Control. Release 46:233–242 (1997).Google Scholar
  26. 26.
    M. Aboubakar, F. Puisieux, P. Couvreur, M. Deyme, and C. Vauthier. Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J. Biomed. Material Res. 47:568–576 (1999).Google Scholar
  27. 27.
    H. Pinto-Alphandary, O. Balland, M. Laurent, A. Andremont, F. Puisieux, and P. Couvreur. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharm. Res. 11:38–46 (1994).Google Scholar
  28. 28.
    A. Dembri, D. Duchêne, and G. Ponchel. The intestinal mucus protects poly(isobutyl-cyanoacrylate) nanoparticles from enzymatic degradation. S. T. P. Pharma Sci. 11:175–180 (2001).Google Scholar
  29. 29.
    J. Kreuter. Peroral administration of nanoparticles. Adv. Drug. Deliv. Rev. 7:71–86 (1991).Google Scholar
  30. 30.
    C. Pimienta, F. Chouinard, A. Labib, and V. Lenaerts. Effect of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow. Int. J. Pharm. 80:1–8 (1992).Google Scholar
  31. 31.
    M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Lévy. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13:1838–1845 (1996).Google Scholar
  32. 32.
    R. L. Owen and D. K. Bhalla. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells. Am. J. Anatomy 168:199–212 (1983).Google Scholar
  33. 33.
    V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser. Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 5:65–68 (1984).Google Scholar
  34. 34.
    J. Kreuter, U. Müller, and K. Munz. Quantitative and microautoradiographic study on mouse intestinal distribution of polycyanoacrylate nanoparticles. Int. J. Pharm. 55:39–45 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Huguette Pinto-Alphandary
    • 1
  • Malam Aboubakar
    • 1
  • Danielle Jaillard
    • 2
  • Patrick Couvreur
    • 1
  • Christine Vauthier
    • 1
  1. 1.UMR CNRS 8612, Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Faculté de PharmacieUniversitéParis XIFrance
  2. 2.UPRES-A CNRS 8080, Service Commun de Microscopie ÉlectroniqueUniversité Paris-SudOrsay CédexFrance

Personalised recommendations